【題目】△ABC的內(nèi)角A. B. C的對邊分別為a,b,c,己知=b(c-asinC)。
(1)求角A的大小;
(2)設(shè)b=c,N是△ABC所在平面上一點(diǎn),且與A點(diǎn)分別位于直線BC的兩側(cè),如圖,若BN=4,CN=2,求四邊形ABNC面積的最大值.
【答案】(1) ;(2) .
【解析】
(1)由條件可得ccosA=c-asinC.由正弦定理得sinA+cosA=1.化簡得sin(A+)=,解得A即可.
(2)由余弦定理得BC2=16+4-16cosN =20-16cosN,再結(jié)合條件得到四邊形面積S=S△ABC+S△BCN,求得最值.
(1)∵ ,∴ cbcosA=b(c-asinC),即ccosA=c-asinC.
由正弦定理得sinCcosA=sinC-sinAsinC,∵ sinC0,
∴ cosA=1-sinA,即sinA+cosA=1.∴ sinA+cosA=,即sin(A+)=.
∵ 0<A<,∴ .∴ A+=,即A=.
(2)在△BCN中,由余弦定理得BC2=NB2+NC2-2NBNCcosN,∵ BN=4,CN=2,
∴ BC2=16+4-16cosN =20-16cosN.
由(1)和b=c,得△ABC是等腰直角三角形,于是AB=AC=BC,
∴ 四邊形ABCD的面積S=S△ABC+S△BCN=
= =
==. ∴ 當(dāng)N=時,S取最大值,
即四邊形ABCD的面積的最大值是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】砂糖橘是柑橘類的名優(yōu)品種,因其味甜如砂糖故名.某果農(nóng)選取一片山地種植砂糖橘,收獲時,該果農(nóng)隨機(jī)選取果樹20株作為樣本測量它們每一株的果實(shí)產(chǎn)量(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖所示.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹株數(shù)是產(chǎn)量在區(qū)間(50,60]上的果樹株數(shù)的倍.
(1)求a,b的值;
(2)從樣本中產(chǎn)量在區(qū)間(50,60]上的果樹里隨機(jī)抽取兩株,求產(chǎn)量在區(qū)間(55,60]上的果樹至少有一株被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的動直線l與E相交于P,Q兩點(diǎn).當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李莊村某社區(qū)電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收管理費(fèi)2元,月用電不超過30度,每度0.4元,超過30度時,超過部分按每度0.5元.
方案二:不收管理費(fèi),每度0.48元.
(1)求方案一收費(fèi)元與用電量(度)間的函數(shù)關(guān)系;
(2)小李家九月份按方案一交費(fèi)34元,問小李家該月用電多少度?
(3)小李家月用電量在什么范圍時,選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量, ,設(shè)函數(shù),且的圖象過點(diǎn)和點(diǎn).
(Ⅰ)求的值;
(Ⅱ)將的圖象向左平移()個單位后得到函數(shù)的圖象.若的圖象上各最高點(diǎn)到點(diǎn)的距離的最小值為1,求的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在上的奇函數(shù)有最小正周期,且時,.
(1)求在上的解析式;
(2)判斷在上的單調(diào)性,并給予證明;
(3)當(dāng)為何值時,關(guān)于方程在上有實(shí)數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)入冬天,大氣流動性變差,容易形成霧握天氣,從而影響空氣質(zhì)量.某城市環(huán)保部門試圖探究車流量與空氣質(zhì)量的相關(guān)性,以確定是否對車輛實(shí)施限行.為此,環(huán)保部門采集到該城市過去一周內(nèi)某時段車流量與空氣質(zhì)量指數(shù)的數(shù)據(jù)如下表:
(1)根據(jù)表中周一到周五的數(shù)據(jù),求y關(guān)于x的線性回歸方程。
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2,則認(rèn)為得到的線性回歸方程是可靠的.請根據(jù)周六和周日數(shù)據(jù),判定所得的線性回歸方程是否可靠?
注:回歸方程中斜率和截距最小二乘估計公式分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有12個球,顏色、大小完全一樣,在重量上,其中一個球不合格,但不知這個球比標(biāo)準(zhǔn)的重還是輕.能否在一架天平上只稱三次(不用砝碼),把這個不合格的球找出來?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè), ,…, 是變量和的個樣本點(diǎn),直線是由這些樣本點(diǎn)通過最小二乘法得到的線性回歸直線(如圖),以下結(jié)論中正確的是( )
A. 和的相關(guān)系數(shù)在和之間
B. 和的相關(guān)系數(shù)為直線的斜率
C. 當(dāng)為偶數(shù)時,分布在兩側(cè)的樣本點(diǎn)的個數(shù)一定相同
D. 所有樣本點(diǎn)(1,2,…, )都在直線上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com