6.已知橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1,直線l為4x-5y+40=0;直線l1為4x-5y+5=0,直線l2為4x-5y+m=0,l1與橢圓相交于A、B兩點(diǎn),求|AB|

分析 將直線l的方程代入橢圓方程,利用韋達(dá)定理及弦長公式即可求得丨AB丨.

解答 解:由題意可知:l1與橢圓相交于A、B兩點(diǎn),設(shè)A(x1,y1),B(x2,y2),
則$\left\{\begin{array}{l}{4x-5y+5=0}\\{\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1}\end{array}\right.$,整理得:5x2+8x-40=0,
則x1+x2=-$\frac{8}{5}$,x1x2=-8,
則丨AB丨=$\sqrt{1+{k}^{2}}$$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{12\sqrt{246}}{25}$,
∴|AB|=$\frac{12\sqrt{246}}{25}$.

點(diǎn)評 本題考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理,弦長公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖的程序框圖的算法思路源于數(shù)學(xué)名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖(圖中“aMODb”表示a除以b的余數(shù)),若輸入的a,b分別為485,270,則輸出的b=( 。
A.0B.10C.5D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)$f(x)=sin\frac{πx}{6}$,集合M={0,1,2,3,4,5,6,7,8},現(xiàn)從M中任取兩個不同元素m,n,則f(m)f(n)=0的概率為( 。
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{7}{18}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若f(x)+f(1-x)=4,則f(0)+f($\frac{1}{n}$)+…+f($\frac{n-1}{n}$)+f(1)(n∈N*)=2n+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.A={a|f(x)=$\frac{1}{\sqrt{a{x}^{2}+3ax+1}}$的定義域?yàn)镽},B={a|3a2+5a-2<0},則A∩B=( 。
A.(0,$\frac{4}{9}$)B.[0,$\frac{1}{3}$)C.(-2,0)D.($\frac{1}{3}$,$\frac{4}{9}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=|x-a|(a∈R).
(1)當(dāng)a=2時,解不等式|x-$\frac{1}{3}$|+$\frac{1}{3}$f(x)≥1;
(2)若不等式|x-$\frac{1}{3}$|+$\frac{1}{3}$f(x)≤x的解集包含[$\frac{1}{3}$,$\frac{1}{2}$],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.證明$\frac{n+2}{2}<1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+…+\frac{1}{2^n}<n+1(n>1)$,當(dāng)n=2時,中間式子等于( 。
A.1B.$1+\frac{1}{2}$C.$1+\frac{1}{2}+\frac{1}{3}$D.$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.(1)解不等式|x-1|+|x+2|≥5的解集.
(2)若關(guān)于x的不等式|ax-2|<3的解集為{x|-$\frac{5}{3}$<x<$\frac{1}{3}$},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C的對邊分別為a,b,c,且 $\frac{cosB}+\frac{cosC}{2a+c}$=0.
(Ⅰ)求角B的大;
(Ⅱ)若b=$\sqrt{13}$,a+c=4,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案