【題目】已知拋物線的焦點為F,過F作兩條互相垂直的弦AB、CD,設(shè)AB、CD的中點分別為M、N。
(1)求證:直線MN必過定點;
(2)分別以AB和CD為直徑作圓,求兩圓相交弦中點H的軌跡方程。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:在軸上的一個焦點,與短軸兩個端點的連線互相垂直,且右焦點坐標為.
(1)求橢圓的方程;
(2)設(shè)直線與圓相切,和橢圓交于,兩點,為原點,線段,分別和圓交于,兩點,設(shè),的面積分別為,,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0、A1、A2…、A5,所有尺寸的紙張長寬比都相同.②在A系列紙中,前一個序號的紙張以兩條長邊中點連線為折線對折裁剪分開后,可以得到兩張后面序號大小的紙,比如1張A0紙對裁后可以得到2張A1紙,1張A1紙對裁可以得到2張A2紙,依此類推.這是因為A系列紙張的長寬比為:1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長度為( )
A.厘米B.厘米C.厘米D.厘米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某超市,隨機調(diào)查了100名顧客購物時使用手機支付的情況,得到如下的列聯(lián)表,已知從其中使用手機支付的人群中隨機抽取1人,抽到青年的概率為.
青年 | 中老年 | 合計 | |
使用手機支付 | 60 | ||
不使用手機支付 | 28 | ||
合計 | 100 |
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有99.9%的把握認為“超市購物用手機支付與年齡有關(guān)”.
(2)現(xiàn)按照“使用手機支付”和“不使用手機支付”進行分層抽樣,從這100名顧客中抽取容量為5的樣本,求“從樣本中任選3人,則3人中至少2人使用手機支付”的概率.
(其中 )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合S={1,2,3,4,5,6},一一映射f:S→S滿足條件:對于任意的x∈S,有f(f(f(x)))=x。則滿足條件的映射f的個數(shù)是( )。
A. 81 B. 80 C. 40 D. 27
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部的形狀是正四棱錐P—A1B1C1D1,下部的形狀是正四棱柱ABCD—A1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.
(1)若AB=6 m,PO1=2 m,則倉庫的容積是多少?
(2)若正四棱錐的側(cè)棱長為6 m,則當PO1為多少時,倉庫的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B,C,D為平面內(nèi)的四點,且A(1,3),B(2,–2),C(4,1).
(1)若,求D點的坐標;
(2)設(shè)向量,,若k–與+3平行,求實數(shù) 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次購物抽獎活動中,假設(shè)某10張券中有一等獎券2張,每張可獲價值50元的獎品;有二等獎券2張,每張可獲價值10元的獎品;其余6張沒有獎.某顧客從此10張獎券中任抽2張,求:
(1)該顧客中獎的概率;
(2)該顧客獲得的獎品總價值X元的概率分布列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com