分析 由題意可得,在區(qū)間[0,π]上,函數(shù)y=sin(x+$\frac{π}{3}$)的圖象和直線y=$\frac{a}{2}$有2個(gè)交點(diǎn),結(jié)合圖象可得$\frac{\sqrt{3}}{2}$<$\frac{a}{2}$<1.求得兩個(gè)實(shí)根的和.
解答 解:方程$\sqrt{3}$cosx+sinx-a=0,即sin(x+$\frac{π}{3}$)=$\frac{a}{2}$,
再根據(jù)方程在區(qū)間[0,π]上有且只有兩個(gè)不同的實(shí)根,
可得在區(qū)間[0,π]上,函數(shù)y=sin(x+$\frac{π}{3}$)的圖象和直線y=$\frac{a}{2}$有2個(gè)交點(diǎn),
結(jié)合圖象可得$\frac{\sqrt{3}}{2}$<$\frac{a}{2}$<1.
所以α+β=2×$\frac{π}{6}$=$\frac{π}{3}$.
故答案是:$\frac{π}{3}$.
點(diǎn)評(píng) 本題主要考查兩角和的正弦公式,正弦函數(shù)的圖象和性質(zhì),體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-6,-2] | B. | $[-6,-\frac{9}{8}]$ | C. | [-5,-3] | D. | [-4,-3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①③ | B. | ②③ | C. | ①②④ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(k)+$\frac{1}{3(k+1)+1}$ | B. | f(k)+$\frac{2}{3k+2}$ | ||
C. | f(k)+$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$ | D. | f(k)+$\frac{1}{3k+4}$-$\frac{1}{k+1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com