O1x2+y2-4x-6y+12=0與圓O2x2+y2-8x-6y+16=0的位置關(guān)系是( 。
A、相交B、外離C、內(nèi)含D、內(nèi)切
分析:將圓的一般方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,根據(jù)兩圓圓心之間的距離和半徑之間的關(guān)系進(jìn)行判斷.
解答:解:圓O1x2+y2-4x-6y+12=0的標(biāo)準(zhǔn)方程為(x-2)2+(y-3)2=1,圓心O1(2,3),半徑r=1,
O2x2+y2-8x-6y+16=0的標(biāo)準(zhǔn)方程為(x-4)2+(y-3)2=9,圓心O2(4,3),半徑R=3,
兩圓心之間的距離|O1O2|=4-2=2=R-r,
∴兩圓內(nèi)切.
故選:D.
點(diǎn)評:本題主要考查圓與圓的位置關(guān)系的判斷,利用圓心距離和半徑之間的關(guān)系是解決圓與圓位置關(guān)系的主要依據(jù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩圓O1:x2+y2=16,O2:(x-1)2+(y+2)2=9,兩圓公共弦交直線O1O2于M點(diǎn),則O1分有向線段MO2所成的比λ=( 。
A、
6
5
B、
5
6
C、-
6
5
D、-
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O1:x2+y2=1與圓O2:(x-3)2+(y-4)2=36,則圓O1與圓O2的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓O1:x2+y2=1與圓O2:(x+4)2+(y-m)2=25相切,則實(shí)數(shù)m的值是
 
.(答案不全不給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•湖北模擬)若圓O1:x2+y2=36與圓O2:(x-m)2+y2=64(m∈R)相交于A、B兩點(diǎn),且兩圓在點(diǎn)A處的切線互相垂直,則線段AB的長度是
48
5
48
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓O1:x2+y2-2x=0和圓O2:x2+y2-6y=0的位置關(guān)系( 。
A、相交B、相切C、外離D、內(nèi)含

查看答案和解析>>

同步練習(xí)冊答案