設集合S={x||x|<5},T={x|x2+4x-21<0},則S∩T=( 。
A、{x|-7<x<-5}
B、{x|3<x<5}
C、{x|-5<x<3}
D、{x|-7<x<5}
考點:交集及其運算
專題:函數(shù)的性質及應用
分析:本題可先對集合S、T進行化簡,再求出它們的交集,得到本題結論.
解答: 解:∵集合S={x||x|<5},
∴S={x|-5<x<5},
∵集合T={x|x2+4x-21<0},
∴T={x|-7<x<3},
∴S∩T={x|-5<x<3}.
故選C.
點評:本題考查了集合的交集運算,本題難度不大,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=1+
3
2
t
(t為參數(shù)),曲線C的極坐標方程為ρ=2
2
sin(θ+
π
4
),直線l與曲線C交于A,B兩點,與y軸交于點P.
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求
1
|PA|
+
1
|PB|
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(sinx,1),
n
=(
3
Acosx,
A
2
cos2x)(A>0)
,函數(shù)f(x)=
m
n
的最大值為6.
(1)求A;
(2)將函數(shù)f(x)的圖象向左平移
π
12
個單位,再將所得圖象上各點的橫坐標縮短為原來的
1
2
倍,縱坐標不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0,
24
]上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,PA=PB.底面ABCD是菱形,且∠ABC=60°.E在棱PD上,滿足PE=2DE,M是AB的中點.
(1)求證:平面PAB⊥平面PMC;
(2)求證:直線PB∥平面EMC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-mx(m∈R).
(1)若曲線y=f(x)過點P(1,-1),求曲線y=f(x)在點P的切線方程;
(2)若f(x)≤0恒成立求m的取值范圍;
(3)求函數(shù)f(x)在區(qū)間[1,e]上最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域是(0,+∞),對任意正實數(shù)m,n恒有f(mn)=f(m)+f(n),且當x>1時,f(x)>0,f(2)=1
(Ⅰ) 求f(1),f(
1
2
)
,f(16)的值;                  
(Ⅱ) 求證:f(x)在(0,+∞)上是增函數(shù);               
(Ⅲ) 求方程4sinx=f(x)的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex,g(x)=x-m,m∈R.
(1)若曲線y=f(x)與直線y=g(x)相切,求實數(shù)m的值;
(2)記h(x)=f(x)•g(x),求h(x)在[0,1]上的最大值;
(3)當m=0時,試比較ef(x-2)與g(x)的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求值
1-2sin40°cos40°
cos40°-
1-sin250°
;
(2)化簡
(1-tanθ)cos2θ+(1+cotθ)sin2θ

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A、
20
3
B、
26
3
C、8
D、4

查看答案和解析>>

同步練習冊答案