2.若集合M={x∈Z||x|≤2},N={x|x2+2x-3<0},則M∩N=( 。
A.[-2,1)B.[-2,1]C.{-2,-1,0}D.{-1,0}

分析 求出M與N中不等式的解集分別確定出M與N,找出兩集合的交集即可.

解答 解:∵M(jìn)={x∈Z||x|≤2}={-2,-1,0,1,2},N=(-3,1),
∴M∩N={-2,-1,0}.
故選:C.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=|x-1|+|x+1|的增區(qū)間為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知$f({2^x})=\frac{1}{x}$,則f(3)=( 。
A.$\frac{1}{3}$B.$\frac{1}{8}$C.log32D.log23

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ax2+blnx在x=1處有極值$\frac{1}{2}$.
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{{{x^2}+a}}{x},且f(1)=2$
(1)證明函數(shù)f(x)是奇函數(shù);
(2)證明f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知全集U=R,集合A={y|y=x2-$\frac{3}{2}$x+1,x∈[0,2]},B={x|y=$\sqrt{1-|x|}$}
(I)求:∁UA∪B;
(Ⅱ)若集合C={x|x+m2≥$\frac{1}{2}$},p:x∈A,q:x∈C,且p是q的充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.直線$\left\{{\begin{array}{l}{x=3+tcos{{230}°}\;\;}\\{y=-1+tsin{{230}°}}\end{array}}\right.$(t為參數(shù))的傾斜角是(  )
A.30°B.45°C.50°D.60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,以其名命名的函數(shù)f(x)=$\left\{\begin{array}{l}1,x為有理數(shù)\\ 0,x為無(wú)理數(shù)\end{array}$,稱(chēng)為狄利克雷函數(shù),則關(guān)于函數(shù)f(x)有以下四個(gè)命題:
①f(f(x))=1;
②函數(shù)f(x)是偶函數(shù);
③任意一個(gè)非零有理數(shù)T,f(x+T)=f(x)對(duì)任意x∈R恒成立;
④存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.
其中真命題的個(gè)數(shù)是( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在△ABC中,a=$\sqrt{3}$b,A=120°,則B的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步練習(xí)冊(cè)答案