【題目】下表為年至年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼年份.
年份代碼 | ||||
線下銷售額 |
(1)已知與具有線性相關關系,求關于的線性回歸方程,并預測年該百貨零售企業(yè)的線下銷售額;
(2)隨著網(wǎng)絡購物的飛速發(fā)展,有不少顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調查平臺為了解顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機調查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯誤的概率不超過的前提下認為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關?
參考公式及數(shù)據(jù):.
【答案】(1),萬元;(2)能.
【解析】
(1)先求出,,利用給出的公式求出,可得線性回歸方程.代入可得年該百貨零售企業(yè)的線下銷售額.
(2)先根據(jù)題設中的數(shù)據(jù)得到列聯(lián)表,再根據(jù)公式算出的值,最后根據(jù)表中數(shù)據(jù)可得在犯錯誤的概率不超過的前提下認為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關.
(1)由題易得,,,,
所以,
所以,
所以y關于x的線性回歸方程為.
由于,所以當時,,
所以預測年該百貨零售企業(yè)的線下銷售額為萬元.
(2)由題可得列聯(lián)表如下:
持樂觀態(tài)度 | 持不樂觀態(tài)度 | 總計 | ||
男顧客 | ||||
女顧客 | ||||
總計 |
故的觀測值,
由于,所以可以在犯錯誤的概率不超過的前提下認為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關.
科目:高中數(shù)學 來源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計劃,收集了近個月廣告投入量(單位:萬元)和收益(單位:萬元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進行擬合,得到相應的回歸方程并進行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應選擇哪個模型?并說明理由;
(Ⅱ)殘差絕對值大于的數(shù)據(jù)被認為是異常數(shù)據(jù),需要剔除:
(。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時,該模型收益的預報值是多少?
附:對于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計分別為:
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解本屆高二學生對文理科的選擇與性別是否有關,現(xiàn)隨機從高二的全體學生中抽取了若干名學生,據(jù)統(tǒng)計,男生35人,理科生40人,理科男生30人,文科女生15人。
(1)完成如下2×2列聯(lián)表,判斷是否有99.9%的把握認為本屆高二學生“對文理科的選擇與性別有關”?
男生 | 女生 | 合計 | |
文科 | |||
理科 | |||
合計 |
(2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現(xiàn)從這5人中隨機抽取2人參加座談會,求抽到的2人恰好一文一理的概率。
0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式,其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
Ⅰ當時,恒成立,求a的取值范圍;
Ⅱ設是定義在上的函數(shù),在內任取個數(shù),,,,,設,令,,如果存在一個常數(shù),使得恒成立,則稱函數(shù)在區(qū)間上的具有性質P.試判斷函數(shù)在區(qū)間上是否具有性質P?若具有性質P,請求出M的最小值;若不具有性質P,請說明理由.注:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商品銷售價格和銷售量與銷售天數(shù)有關,第x天的銷售價格(元/百斤),第x天的銷售量(百斤)(a為常數(shù)),且第7天銷售該商品的銷售收入為2009元.
(1)求第10天銷售該商品的銷售收入是多少?
(2)這20天中,哪一天的銷售收入最大?為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2018·湖南師大附中摸底)已知直線l經(jīng)過點P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長為8,則直線l的方程是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com