3.計算log327+lg25+lg4+7${\;}^{{{log}_7}2}}$的結(jié)果為7.

分析 根據(jù)對數(shù)的運(yùn)算性質(zhì)計算即可.

解答 解:log327+lg25+lg4+7${\;}^{{{log}_7}2}}$=3log33+lg100+2=3+2+2=7,
故答案為:7

點(diǎn)評 本題考查了對數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下面四個命題正確的是( 。
A.第一象限角必是銳角B.小于90°的角是銳角
C.若α>β,則sinα>sinβD.銳角必是第一象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知向量$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,2),若m$\overrightarrow{a}$+4$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$共線,m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,拋物線C:x2=2py(p>0),其焦點(diǎn)為F,C上的一點(diǎn)M(4,m)滿足|MF|=4.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)E(-1,0)作不經(jīng)過原點(diǎn)的兩條直線EA,EB分別與拋物線C和圓F:x2+(y-2)2=4相切于點(diǎn)A,B,試判斷直線AB是否經(jīng)過焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若集合A={x|0<x<2},B={x|-1<x<1},則(∁RA)∩B=( 。
A.{x|0≤x≤1}B.{x|1≤x<2}C.{x|-1<x≤0}D.{x|0≤x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=ln(1-x)-ln(1+x)+a在x∈[-$\frac{1}{2}$,$\frac{1}{2}$]的最大值為M,最小值為N,且M+N=1,則a的值是(  )
A.1B.$\frac{1}{2}$C.-1D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-f(x);當(dāng)0≤x≤1時,f(x)=$\frac{1}{2}$x;令g(x)=f(x)+$\frac{1}{2}$,則函數(shù)g(x)在區(qū)間[-10,10]上所有零點(diǎn)之和為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知Sn為數(shù)列{an}的前n項(xiàng)和,a1=1,且$\frac{1}{2}$an+1=Sn+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若6n-m(Sn+1)≤18對n∈N*恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在等差數(shù)列{an}中,已知a1+a7=22,a4+a10=40,則公差d=( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案