分析 (Ⅰ)f(x)是定義在R上的奇函數(shù)⇒f(-0)=-f(0),從而可得f(0)的值;
(Ⅱ)設(shè)x<0,則-x>0,利用x>0時(shí),f(x)=x2+2x及f(x)=-f(-x),可求得此時(shí)f(x)的表達(dá)式,從而可得此函數(shù)在R上的解析;
(Ⅲ)任取x1,x2∈(0,+∞),且x1<x2,利用定義法可判斷函數(shù)f(x)在R上單調(diào)遞增,再將不等式f(t+1)+f(m-2t2)<0恒成立轉(zhuǎn)化為f(t+1)<-f(m-2t2)=f(2t2-m)恒成立,分離參數(shù)m,利用恒成立思想可求實(shí)數(shù)m的取值范圍.
解答 (本題12分)
解:(Ⅰ)因?yàn)閒(x)是定義在R上的奇函數(shù),所以f(-0)=-f(0),f(0)=0
(Ⅱ)設(shè)x<0,則-x>0,∴f(-x)=(-x)2+2(-x)=x2-2x,
又∵f(x)是定義在R上的奇函數(shù),∴f(x)=-f(-x)=-x2+2x,
∴$f(x)=\left\{{\begin{array}{l}{{x^2}+2x\;\;\;(x>0)}\\{0\;(x=0)}\\{-{x^2}+2x\;\;(x<0)}\end{array}}\right.$.
(Ⅲ)任取x1,x2∈(0,+∞),且x1<x2,
則$f({x_1})-f({x_2})=({x_1}^2+2{x_1})-({x_2}^2+2{x^2})=({x_1}-{x_2})({x_1}+{x_2}+2)$,
∵x1,x2∈(0,+∞),且x1<x2,∴x1+x2+2>0,x1-x2<0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴函數(shù)f(x)在(0,+∞)上單調(diào)遞增.
同理可證:函數(shù)f(x)在(-∞,0)上單調(diào)遞增,又f(0)=0,
∴函數(shù)f(x)在R上單調(diào)遞增.
∵對(duì)任意的t∈R,不等式f(t+1)+f(m-2t2)<0恒成立,
即f(t+1)<-f(m-2t2)=f(2t2-m)恒成立,
∴t+1<2t2-m,即$m<2{t^2}-t-1=2{(t-\frac{1}{2})^2}-\frac{3}{2}$恒成立,
∴$m<-\frac{3}{2}$,
所以,實(shí)數(shù)m的取值范圍為$(-∞,\;-\frac{3}{2})$.
點(diǎn)評(píng) 本題考查函數(shù)恒成立問題,考查函數(shù)解析式的求解及常用方法,突出考查利用函數(shù)單調(diào)性的定義判斷函數(shù)的單調(diào)性,考查等價(jià)轉(zhuǎn)化思想與運(yùn)算求解能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 10+10$\sqrt{2}$ | C. | 20 | D. | 28 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 計(jì)算小于100的奇數(shù)的連乘積 | |
B. | 計(jì)算從1開始的連續(xù)奇數(shù)的連乘積 | |
C. | 從1開始的連續(xù)奇數(shù)的連乘積,當(dāng)乘積大于100時(shí),計(jì)算奇數(shù)的個(gè)數(shù) | |
D. | 計(jì)算1×3×5×…×n≥100時(shí)的最小的n值. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?m∈R,使$f(x)=({m-1})•{x^{{m^2}-4m+3}}$是冪函數(shù),且在(0,+∞)上遞減 | |
B. | 函數(shù)$f(x)=lg[{{x^2}+({a+1})x-a+\frac{1}{4}}]$的值域?yàn)镽,則a≤-6或a≥0 | |
C. | 關(guān)于x的方程ax2+2x+1=0至少有一個(gè)負(fù)根的棄要條件是a≤1 | |
D. | 函數(shù)y=f(a+x)與函數(shù)y=f(a-x)的圖象關(guān)于直線x=a對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com