A. | 2 012 | B. | 2 | C. | 2 013 | D. | -2 |
分析 根據(jù)函數(shù)奇偶性和周期性的性質(zhì)進(jìn)行轉(zhuǎn)化求解即可.
解答 解:∵對任意x>0,都有f(x+4)=f(x),
∴當(dāng)x>0時(shí),函數(shù)的周期是4,
則f(2 018)=f(4×504+2)=f(2),
∵f(x)是定義在R上的奇函數(shù),若f(-2)=2,
∴f(-2)=-f(2)=2,
則f(2)=-2,
即f(2 018)=f(2 )=-2,
故選:D
點(diǎn)評 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性和周期性的性質(zhì)進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{tan2017°-tan1949°}{tan1°}$-67 | B. | $\frac{tan2016°-tan1949°}{tan1°}$-67 | ||
C. | $\frac{tan2017°-tan1949°}{tan1°}$-68 | D. | $\frac{tan2016°-tan1949°}{tan1°}$-68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>0>n | B. | 0>m>n | ||
C. | m>n>0 | D. | m,n與0的大小關(guān)系不確定 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com