14.設(shè)函數(shù)f(x)=ax2-a-lnx,其中a∈R.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)x∈(1,+∞)時,xf(x)+xe1-x>1恒成立,求a的取值范圍.(其中,e=2.718…為自然對數(shù)的底數(shù)).

分析 (I)利用導(dǎo)數(shù)的運算法則得出f′(x),通過對a分類討論,利用一元二次方程與一元二次不等式的關(guān)系即可判斷出其單調(diào)性;
(Ⅱ)令g(x)=f(x)-$\frac{1}{x}$+e1-x=ax2-lnx-$\frac{1}{x}$+e1-x-a,可得g(1)=0,從而g′(1)≥0,解得得a≥$\frac{1}{2}$,當(dāng)a≥$\frac{1}{2}$時,可得F′(x)在a≥$\frac{1}{2}$時恒大于0,即F(x)在x∈(1,+∞)單調(diào)遞增.由F(x)>F(1)=2a-1≥0,可得g(x)也在x∈(1,+∞)單調(diào)遞增,進(jìn)而利用g(x)>g(1)=0,可得g(x)在x∈(1,+∞)上恒大于0,綜合可得a所有可能取值.

解答 解:(Ⅰ)由題意,f′(x)=2ax-$\frac{1}{x}$=$\frac{2{ax}^{2}-1}{x}$,x>0,
①當(dāng)a≤0時,2ax2-1≤0,f′(x)≤0,f(x)在(0,+∞)上單調(diào)遞減.
②當(dāng)a>0時,f′(x)=$\frac{2a(x+\frac{1}{2a})(x-\frac{1}{2a})}{x}$,當(dāng)x∈(0,$\frac{1}{2a}$)時,f′(x)<0,
當(dāng)x∈($\frac{1}{2a}$,+∞)時,f′(x)>0,
故f(x)在(0,$\frac{1}{2a}$)上單調(diào)遞減,在($\frac{1}{2a}$,+∞)上單調(diào)遞增.
(Ⅱ)原不等式等價于f(x)-$\frac{1}{x}$+e1-x>0在x∈(1.+∞)上恒成立,
一方面,令g(x)=f(x)-$\frac{1}{x}$+e1-x=ax2-lnx-$\frac{1}{x}$+e1-x-a,
只需g(x)在x∈(1.+∞)上恒大于0即可,
又∵g(1)=0,故g′(x)在x=1處必大于等于0.
令F(x)=g′(x)=2ax-$\frac{1}{x}$+$\frac{1}{{x}^{2}}$-e1-x,g′(1)≥0,可得a≥$\frac{1}{2}$,
另一方面,當(dāng)a≥$\frac{1}{2}$時,F(xiàn)′(x)=2a+$\frac{1}{{x}^{2}}$-$\frac{2}{{x}^{3}}$+e1-x≥1+$\frac{1}{{x}^{2}}$-$\frac{2}{{x}^{3}}$+e1-x=$\frac{{x}^{3}+x-2}{{x}^{3}}$+e1-x,
∵x∈(1,+∞),故x3+x-2>0,又e1-x>0,故F′(x)在a≥$\frac{1}{2}$時恒大于0.
∴當(dāng)a≥$\frac{1}{2}$時,F(xiàn)(x)在x∈(1,+∞)單調(diào)遞增.
∴F(x)>F(1)=2a-1≥0,故g(x)也在x∈(1,+∞)單調(diào)遞增.
∴g(x)>g(1)=0,即g(x)在x∈(1,+∞)上恒大于0.
綜上,a≥$\frac{1}{2}$.

點評 本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,熟練掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、分類討論的思想方法等是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖為某幾何體的三視圖,則該幾何體的表面積為6+$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在銳角△ABC中,a=2bsinA,則cosA+sinC的取值范圍是($\frac{\sqrt{3}}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若圓x2+y2=r2(r>0)上恰有兩個點到直線2x+2y+$\sqrt{2}$=0的距離等于1,則r的取值范圍是(  )
A.r>$\frac{1}{2}$B.$\frac{1}{2}$<r<$\frac{3}{2}$C.r<$\frac{3}{2}$D.r≥$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$,滿足$\overrightarrow{a}$=(2,3),($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),則|$\overrightarrow$|=$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用二分法求函數(shù)f(x)的一個正實數(shù)零點時,經(jīng)計算,f(0.64)<0,f(0.72)>0,f(0.68)<0,則函數(shù)的一個精確到0.1的正實數(shù)零點的近似值為( 。
A.0.68B.0.72C.0.7D.0.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a=log4$\sqrt{5}$,b=log52,c=log45,則(  )
A.a<c<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知x,y滿足約束條件$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$,且z=2x+y的最大值是最小值的3倍,則a的值是( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.7D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{{x}^{2}-2ax+2a,x≥0}\end{array}\right.$的圖象上恰好有兩對關(guān)于原點對稱的點,則實數(shù)a的取值范圍是( 。
A.(4,+∞)B.(-∞,0)∪(4,+∞)C.(0,4)D.(-∞,0)

查看答案和解析>>

同步練習(xí)冊答案