A. | r>$\frac{1}{2}$ | B. | $\frac{1}{2}$<r<$\frac{3}{2}$ | C. | r<$\frac{3}{2}$ | D. | r≥$\frac{3}{2}$ |
分析 先求出圓心O(0,0)到直線(xiàn)2x+2y+$\sqrt{2}$=0的距離d,由圓x2+y2=r2(r>0)上恰有兩個(gè)點(diǎn)到直線(xiàn)2x+2y+$\sqrt{2}$=0的距離等于1,得r-1<d<r+1,由此能求出結(jié)果.
解答 解:圓心O(0,0)到直線(xiàn)2x+2y+$\sqrt{2}$=0的距離d=$\frac{|0+0+\sqrt{2}|}{\sqrt{4+4}}$=$\frac{1}{2}$,
∵圓x2+y2=r2(r>0)上恰有兩個(gè)點(diǎn)到直線(xiàn)2x+2y+$\sqrt{2}$=0的距離等于1,
∴r-1<d<r+1,
∴$\left\{\begin{array}{l}{r-1<\frac{1}{2}}\\{r+1>\frac{1}{2}}\end{array}\right.$,且r>d=$\frac{1}{2}$,
∴$\frac{1}{2}<r<\frac{3}{2}$.
故選:B.
點(diǎn)評(píng) 本題考查圓的半徑的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線(xiàn)的距離公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 紅燈 | B. | 黃燈 | C. | 綠燈 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $6\sqrt{3}$ | B. | $8\sqrt{3}$ | C. | $18\sqrt{3}$ | D. | $8\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -$\frac{1}{3}$ | C. | -3 | D. | -$\frac{2\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:解答題
來(lái)源: 題型:查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({-\frac{1}{2},\frac{1}{2}})$ | B. | $[{-\frac{1}{2},\frac{1}{2}}]$ | C. | $({-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}})$ | D. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com