分析 (1)在△ABD中使用正弦定理解出;
(2)在△ACD中使用余弦定理解出.
解答 解:(1)在△ABD中,AB=6,∠ADB=60°,∠BAD=75°,∴B=45°,
由正弦定理得AD=$\frac{AB•sin45°}{sin60°}$=2$\sqrt{6}$,∴A處與D處的距離為4$\sqrt{6}$nmile.
(2)在△ADC中,AC=4,AD=2$\sqrt{6}$,∠CAD=30°,
∴CD2=AD2+AC2-2AD•AC•cos30°.解得CD=2$\sqrt{10-6\sqrt{2}}$.
∴燈塔C與D處的距離為2$\sqrt{10-6\sqrt{2}}$nmile.
點評 本題考查了解三角形的應(yīng)用,構(gòu)造合適的三角形是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -C73C4343-47 | B. | -C72C4243+47 | C. | -47 | D. | 47 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 9 | C. | 12 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | 6 | D. | 8 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com