(本小題滿分12分) 已知橢圓E:=1(a>b>o)的離心率e=,且經(jīng)過點(,1),O為坐標原點。

(Ⅰ)求橢圓E的標準方程;
。á颍﹫AO是以橢圓E的長軸為直徑的圓,M是直線x=-4在x軸上方的一點,過M作圓O的兩條切線,切點分別為P、Q,當∠PMQ=60°時,求直線PQ的方程.
(1);(2)x-y+2="0."

試題分析:(Ⅰ)根據(jù)橢圓E:橢圓E:=1(a>b>o)的離心率e=,可得a2=2b2,利用橢圓E:=1經(jīng)過點(,1)我們有 ,從而可求橢圓E的標準方程;
(Ⅱ)連接OM,OP,OQ,設M(-4,m),由圓的切線性質及∠PMQ=60°,可知△OPM為直角三角形且∠OMP=30°,從而可求M(-4,4),進而以OM為直徑的圓K的方程為(x+2)2+(y-2)2=8與圓O:x2+y2=8聯(lián)立,兩式相減可得直線PQ的方程.
解:(1)橢圓的標準方程為:   ﹍﹍﹍﹍﹍﹍﹍4分
(2)連接QM,OP,OQ,PQ和MO交于點A,
有題意可得M(-4,m),∵∠PMQ=600
∴∠OMP=300,∵
∵m>0,∴m=4,∴M(-4,4)            ﹍﹍﹍﹍﹍﹍﹍7分
∴直線OM的斜率,有MP=MQ,OP=OQ可知OM⊥PQ,
,設直線PQ的方程為y=x+n     ﹍﹍﹍﹍﹍﹍﹍9分
∵∠OMP=300,∴∠POM=600,∴∠OPA=300,
,即O到直線PQ的距離為,  ﹍﹍﹍﹍10分
(負數(shù)舍去),∴PQ的方程為x-y+2=0. ﹍﹍﹍﹍12分
點評:解題的關鍵是確定M的坐標,進而確定以OM為直徑的圓K的方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

.已知橢圓的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的動點,滿足點P是線段F1Q與該橢圓的交點,點T在線段F2Q上,并且滿足

(Ⅰ)設為點P的橫坐標,證明;
(Ⅱ)求點T的軌跡C的方程;
(Ⅲ)試問:在點T的軌跡C上,是否存在點M,使△F1M的面積S=若存在,求∠F1MF2的正切值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點為其右焦點.
(1)求橢圓的方程;
(2)設過點的直線與橢圓相交于兩點(點兩點之間),若的面積相等,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)設橢圓)經(jīng)過點,其離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ) 直線交橢圓于兩點,且的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題12分)已知,且點A和點B都在橢圓內部,
(1)請列出有序數(shù)組的所有可能結果;
(2)記“使得成立的”為事件A,求事件A發(fā)生的概率。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設點是曲線上的點,,則(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓E:,對于任意實數(shù)下列直線被橢圓E截得的弦長與直線
被橢圓E截得的弦長不可能相等的是( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分) 求滿足下列條件的橢圓的標準方程.
(1)焦點在坐標軸上,且經(jīng)過兩點;
(2)經(jīng)過點(2,-3)且與橢圓具有共同的焦點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,AB是過橢圓左焦點F的一弦,C是橢圓的右焦點,已知|AB|=|AC|=4,∠BAC=90°,求橢圓方程.

查看答案和解析>>

同步練習冊答案