設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對(duì)定義域內(nèi)的每一個(gè),總有,則稱為“階負(fù)函數(shù)”;若對(duì)定義域內(nèi)的每一個(gè),總有,
則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).
(1)若既是“1階負(fù)函數(shù)”,又是“1階不減函數(shù)”,求實(shí)數(shù)的取值范圍;
(2)對(duì)任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負(fù)函數(shù)”?并說明理由.
(1) ;(2)詳見解析.
解析試題分析:(1)利用在上單調(diào)遞增,借助求導(dǎo)的方法進(jìn)行探究;(2)通過反證法進(jìn)行證明.本
題關(guān)鍵在于判斷 在時(shí)無上界,再用單調(diào)性即可證出結(jié)論.
試題解析:(1)依題意,在上單調(diào)遞增,
故 恒成立,得, 2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/1/18csu3.png" style="vertical-align:middle;" />,所以. 4分
而當(dāng)時(shí),顯然在恒成立,
所以. 6分
(2)①先證:
若不存在正實(shí)數(shù),使得,則恒成立. 8分
假設(shè)存在正實(shí)數(shù),使得,則有,
由題意,當(dāng)時(shí),,可得在上單調(diào)遞增,
當(dāng)時(shí),恒成立,即恒成立,
故必存在,使得(其中為任意常數(shù)),
這與恒成立(即有上界)矛盾,故假設(shè)不成立,
所以當(dāng)時(shí),,即; 13分
②再證無解:
假設(shè)存在正實(shí)數(shù),使得,
則對(duì)于任意,有,即有,
這與①矛盾,故假設(shè)不成立,
所以無解,
綜上得,即,
故所有滿足題設(shè)的都是“2階負(fù)函數(shù)”. 16分
考點(diǎn):1.導(dǎo)數(shù)的應(yīng)用;2.新定義問題;3.反證法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)的圖象與直線為常數(shù))相切,并且切點(diǎn)的橫坐標(biāo)依次成等差數(shù)列,且公差為
(I)求的值;
(Ⅱ)若點(diǎn)是圖象的對(duì)稱中心,且,求點(diǎn)A的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
⑴ 求函數(shù)的單調(diào)區(qū)間;
⑵ 如果對(duì)于任意的,總成立,求實(shí)數(shù)的取值范圍;
⑶ 是否存在正實(shí)數(shù),使得:當(dāng)時(shí),不等式恒成立?請(qǐng)給出結(jié)論并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知.
(Ⅰ)求的單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)在上只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(其中,),且函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若,滿足,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,試探究與的大小,并說明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),,(1)若,求函數(shù)的極值;
(2)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使線段的中點(diǎn)的橫坐標(biāo)與直線的斜率之間滿足?若存在,求出;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(Ⅰ)若,求函數(shù)的極值;
(Ⅱ)設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若在區(qū)間()上存在一點(diǎn),使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(是自然對(duì)數(shù)的底數(shù),).
(Ⅰ)求的單調(diào)區(qū)間、最大值;
(Ⅱ)討論關(guān)于的方程根的個(gè)數(shù)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com