若函數(shù)的圖象與直線為常數(shù))相切,并且切點的橫坐標(biāo)依次成等差數(shù)列,且公差為
(I)求的值;
(Ⅱ)若點是圖象的對稱中心,且,求點A的坐標(biāo)
(Ⅰ)的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值為;(Ⅱ) .
解析試題分析:(Ⅰ)直接根據(jù)導(dǎo)數(shù)和零的大小關(guān)系求得單調(diào)區(qū)間,并由單調(diào)性求得極值;(Ⅱ)先由導(dǎo)數(shù)判斷出在R內(nèi)單調(diào)遞增,說明對任意,都有,而,從而得證.
試題解析:(I)
的圖象與相切.
為的最大值或最小值,即或 (6分)
(II)又因為切點的橫坐標(biāo)依次成公差為的等差數(shù)列.所以最小正周期為
又,所以 (8分)
即 (9分)
令
則 (10分)
由得k=1,2,
因此對稱中心為 (12分)
考點:1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2. 利用導(dǎo)數(shù)求函數(shù)極值3.利用函數(shù)的最值證明不等式.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(m為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),函數(shù) 的最小值為1,其中 是函數(shù)f(x)的導(dǎo)數(shù).
(1)求m的值.
(2)判斷直線y=e是否為曲線f(x)的切線,若是,試求出切點坐標(biāo)和函數(shù)f(x)的單調(diào)區(qū)間;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),為函數(shù)的導(dǎo)函數(shù).
(1)設(shè)函數(shù)f(x)的圖象與x軸交點為A,曲線y=f(x)在A點處的切線方程是,求的值;
(2)若函數(shù),求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)若在處有極值,求的單調(diào)遞增區(qū)間;
(Ⅲ)是否存在實數(shù),使在區(qū)間的最小值是3,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(是自然對數(shù)的底數(shù)).
(1)若曲線在處的切線也是拋物線的切線,求的值;
(2)當(dāng)時,是否存在,使曲線在點處的切線斜率與 在
上的最小值相等?若存在,求符合條件的的個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是實數(shù),函數(shù),和,分別是的導(dǎo)函數(shù),若在區(qū)間上恒成立,則稱和在區(qū)間上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)和在區(qū)間上單調(diào)性一致,求實數(shù)的取值范圍;
(Ⅱ)設(shè)且,若函數(shù)和在以為端點的開區(qū)間上單調(diào)性一致,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)是定義在的可導(dǎo)函數(shù),且不恒為0,記.若對定義域內(nèi)的每一個,總有,則稱為“階負函數(shù)”;若對定義域內(nèi)的每一個,總有,
則稱為“階不減函數(shù)”(為函數(shù)的導(dǎo)函數(shù)).
(1)若既是“1階負函數(shù)”,又是“1階不減函數(shù)”,求實數(shù)的取值范圍;
(2)對任給的“2階不減函數(shù)”,如果存在常數(shù),使得恒成立,試判斷是否為“2階負函數(shù)”?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com