分析 利用三角函數(shù)的恒等式化簡函數(shù)y,并考慮絕對值對函數(shù)y周期的影響即可.
解答 解:∵函數(shù)y=|sin($\frac{π}{6}$-2x)+sin2x|
=|sin$\frac{π}{6}$cos2x-cos$\frac{π}{6}$sin2x+sin2x|
=|$\frac{1}{2}$cos2x+(1-$\frac{\sqrt{3}}{2}$)sin2x|
=$\sqrt{2-\sqrt{3}}$|sin(2x+θ)|,其中θ=arctan(2-$\sqrt{3}$);
∴函數(shù)y的最小正周期是
T=$\frac{1}{2}$×$\frac{2π}{ω}$=$\frac{1}{2}$×$\frac{2π}{2}$=$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.
點評 本題考查了三角函數(shù)最小正周期的求法問題,解題時應先將函數(shù)化簡為y=Asin(ωx+ρ)的形式,再求T,還應考慮絕對值對周期的影響,是基礎題目.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (x+1)cosx<1,x∈(0,π) | B. | e${\;}^{{x}^{2}}$>1+x2,x∈(0,+∞) | ||
C. | sinx+tanx>2x,x∈(0,$\frac{π}{2}$) | D. | lnx+ex>x$-\frac{1}{x}$+2,x∈(0,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com