10.已知等比數(shù)列{an}中,S3=20,S6=60,則S9=140.

分析 由等比數(shù)列{an}的性質(zhì)可得:S3,S6-S3,S9-S6,成等比數(shù)列.即可得出.

解答 解:由等比數(shù)列{an}的性質(zhì)可得:S3,S6-S3,S9-S6,成等比數(shù)列.
∴(60-20)2=20×(S9-60),解得S9=140.
故答案為:140.

點評 本題考查了等比數(shù)列的通項公式與性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合P={1,3,5,7},Q={x|2x-1>11},則P∩Q等于( 。
A.{7}B.{5,7}C.{3,5,7}D.{x|6<x≤7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前n項和 Sn,且a4=11,S8=100;數(shù)列{bn}滿足${b_1}=\frac{1}{2}{a_1}$,anbn+1+bn+1=nbn
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知正實數(shù)a,b滿足a+b=3,則$\frac{1}{1+a}+\frac{4}{4+b}$的最小值為(  )
A.1B.$\frac{7}{8}$C.$\frac{9}{8}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}的通項公式an=n2-2n-8(n∈N*),則a4等于(  )
A.1B.2C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知角$α∈(\frac{π}{2},π)$,且tanα=-$\frac{{\sqrt{3}}}{3}$,則cosα的值為(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.底面半徑為4,高為$8\sqrt{2}$的圓錐有一個內(nèi)接的正四棱柱(底面是正方形,側(cè)棱與底面垂直的四棱柱).
(1)設(shè)正四棱柱的底面邊長為x,試將棱柱的高h表示成x的函數(shù);
(2)當(dāng)x取何值時,此正四棱柱的表面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=logax(a>0,且a≠1),且f(3)-f(2)=1.
(1)若f(3m-2)<f(2m+5),求實數(shù)m的取值范圍;
(2)求使$f({x-\frac{2}{x}})={log_{\frac{9}{4}}}\frac{49}{4}$成立的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=xsinx+cosx
(I)若f(x)>k對任意的x∈(0,π)恒成立,求實數(shù)k的取值范圍;
(II)判斷f(x)在區(qū)間(2,3)上的零點個數(shù),并證明你的結(jié)論.(參考數(shù)據(jù):$\sqrt{2}$≈1.4,$\sqrt{6}$≈2.4)

查看答案和解析>>

同步練習(xí)冊答案