15.已知角$α∈(\frac{π}{2},π)$,且tanα=-$\frac{{\sqrt{3}}}{3}$,則cosα的值為( 。
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由已知求出角α,進一步求得cosα的值.

解答 解:∵$α∈(\frac{π}{2},π)$,且tanα=-$\frac{{\sqrt{3}}}{3}$,
∴α=$\frac{5π}{6}$,
則cosα=cos$\frac{5π}{6}$=$-\frac{\sqrt{3}}{2}$.
故選:C.

點評 本題考查三角函數(shù)的化簡求值,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知$\overrightarrow{a}$=($\sqrt{3}$,-1,0),$\overrightarrow$=(k,0,1),$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,則k=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)θ為第二象限角,若tan(θ+$\frac{π}{4}$)=$\frac{1}{2}$,則sinθ+cosθ=(  )
A.$-\frac{{\sqrt{10}}}{5}$B.$\frac{{\sqrt{10}}}{5}$C.$-\frac{{\sqrt{10}}}{10}$D.$\frac{{\sqrt{10}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校從高三年級期末考試的學(xué)生中抽出20名學(xué)生,其成績(均為整數(shù))的頻率分布直方圖如圖所示:
(1)估計這次考試的及格率(60分及以上為及格)和平均分;
(2)從成績是80分以上(包括80分)的學(xué)生中選兩人,求他們在不同分?jǐn)?shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知等比數(shù)列{an}中,S3=20,S6=60,則S9=140.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.畫出底面邊長為4cm,高為3cm的正四棱錐的直觀圖.(不寫作法)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知兩條不同的直線m,n和平面α,下列說法正確的是( 。
A.如果m?α,n?α,m、n是不在任何同一個平面內(nèi)的直線,那么n∥α
B.如果m?α,n?α,m、n是不在任何同一個平面內(nèi)的直線,那么n與α相交
C.如果m∥α,n∥α,m、n共面,那么m∥n
D.如果m?α,n∥α,m、n共面,那么m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=$\sqrt{1-x}+\sqrt{x}$的定義域為( 。
A.(-∞,1]B.[0,1]C.[0,+∞)D.(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若偶函數(shù)f(x)在區(qū)間[-3,-1]上有最大值6,則f(x)在區(qū)間[1,3]上有( 。
A.最大值6B.最小值6C.最大值-6D.最小值-6

查看答案和解析>>

同步練習(xí)冊答案