【題目】為比較甲、乙兩地某月14時(shí)的氣溫情況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:
①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;
②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;
③甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差;
④甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差,
其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為( )
A.①③B.①④C.②③D.②④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,),(0,),的距離之和等于4,設(shè)點(diǎn)P的軌跡為C.
(1)求C的方程.
(2)設(shè)直線與C交于A,B兩點(diǎn),求弦長(zhǎng)|AB|,并判斷OA與OB是否垂直,若垂直,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:的焦點(diǎn)為F1(–1、0),
F2(1,0).過(guò)F2作x軸的垂線l,在x軸的上方,l與圓F2:交于點(diǎn)A,與橢圓C交于點(diǎn)D.連結(jié)AF1并延長(zhǎng)交圓F2于點(diǎn)B,連結(jié)BF2交橢圓C于點(diǎn)E,連結(jié)DF1.已知DF1=.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們稱滿足以下兩個(gè)條件的有窮數(shù)列為階“期待數(shù)列”;①;②.
(1)若數(shù)列的通項(xiàng)公式是,試判斷數(shù)列是否為2014階“期待數(shù)列”,并說(shuō)明理由;
(2)若等比數(shù)列為階“期待數(shù)列”,求公比及數(shù)列的通項(xiàng)公式;
(3)若一個(gè)等差數(shù)列既是()階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,已知橢圓,拋物線的焦點(diǎn)是的一個(gè)頂點(diǎn),設(shè)是上的動(dòng)點(diǎn),且位于第一象限,記在點(diǎn)處的切線為.
(1)求的值和切線的方程(用表示)
(2)設(shè)與交于不同的兩點(diǎn),線段的中點(diǎn)為,直線與過(guò)且垂直于軸的直線交于點(diǎn).
(i)求證:點(diǎn)在定直線上;
(ii)設(shè)與軸交于點(diǎn),記的面積為,的面積為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐PABCD中,AD∥BC,平面PAC⊥平面ABCD,AB=AD=DC=1,
∠ABC=∠DCB=60,E是PC上一點(diǎn).
(Ⅰ)證明:平面EAB⊥平面PAC;
(Ⅱ)若△PAC是正三角形,且E是PC中點(diǎn),求三棱錐AEBC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為2的圓位于軸右側(cè),且與直線相切.
(1)求圓的方程;
(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的的面積;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線的焦點(diǎn)為F,圓,點(diǎn)為拋物線上一動(dòng)點(diǎn).已知當(dāng)的面積為.
(I)求拋物線方程;
(II)若,過(guò)P做圓C的兩條切線分別交y軸于M,N兩點(diǎn),求面積的最小值,并求出此時(shí)P點(diǎn)坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com