空間四邊形OABC中,OB=6,OC=4,BC=4,∠AOB=∠AOC=
π
3
,則cos<
OA
BC
>的值是
-
1
4
-
1
4
分析:利用OB=6,OC=4,BC=4,∠AOB=∠AOC=
π
3
,以及兩個向量的數(shù)量積的定義化簡cos<
OA
,
BC
>的值.
解答:解:∵OB=6,OC=4,BC=4,∠AOB=∠AOC=
π
3
,
∴cos<
OA
,
BC
>=
OA
BC
|
OA
||
BC
|
=
OA
•(
OC
-
OB
)
|
OA
||
BC
|
=
|
OC
|cos
π
3
-|
OB
|cos
π
3
|
BC
|
=
1
2
-6×
1
2
4
=-
1
4

故答案為:-
1
4
點(diǎn)評:本題考查兩個向量的數(shù)量積的定義,兩個向量的夾角公式的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,空間四邊形OABC中,
OA
=
a
OB
=
b
,
OC
=
c
,點(diǎn)M在
OA
上,且OM=2MA,點(diǎn)N為BC中點(diǎn),則
MN
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形OABC中,
OA
=
a
,
OB
=
b
,
OC
=
c
,點(diǎn)M在線段OA上,且OM=2MA,N為BC的中點(diǎn),則
MN
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,空間四邊形OABC中,
OA
=a,
OB
=b,
OC
=c,點(diǎn)M在OA上,且OM=
1
2
MA,N為BC中點(diǎn),則
MN
等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在空間四邊形OABC中,已知E是線段BC的中點(diǎn),G為AE的中點(diǎn),若
OA
,
OB
OC
分別記為
a
,
b
c
,則用
a
,
b
,
c
表示
OG
的結(jié)果為
OG
=
1
2
a
+
1
4
b
+
1
4
c
1
2
a
+
1
4
b
+
1
4
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

空間四邊形OABC中,
OA
=
a
,
OB
=
b
,
OC
=
c
,點(diǎn)M在OA上,且OM=2MA,N為BC的中點(diǎn),則
MN
=
 

查看答案和解析>>

同步練習(xí)冊答案