A. | $-\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | $-\frac{1}{6}$ | D. | $\frac{1}{6}$ |
分析 利用向量垂直與數(shù)量積的關(guān)系即可得出.
解答 解:向量$λ\overrightarrow a+\overrightarrow b$=(-3λ-1,2λ),$\overrightarrow a-2\overrightarrow b$=(-1,2),
∵向量$λ\overrightarrow a+\overrightarrow b$與$\overrightarrow a-2\overrightarrow b$垂直,∴($λ\overrightarrow a+\overrightarrow b$)•($\overrightarrow a-2\overrightarrow b$)=-(-3λ-1)+4λ=0,
解得λ=-$\frac{1}{7}$.
故選:A.
點評 本題考查了向量垂直與數(shù)量積的關(guān)系,考查了推理能力與計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1≤x<2} | B. | {x|x>2} | C. | {x|x≥1或x<0} | D. | {x|x>0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f'({\frac{2ab}{a+b}})<f'({\frac{a+b}{2}})<f'({\sqrt{ab}})$ | B. | $f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})<f'({\frac{a+b}{2}})$ | ||
C. | $f'({\frac{a+b}{2}})<f'({\frac{2ab}{a+b}})<f'({\sqrt{ab}})$ | D. | $f'({\frac{a+b}{2}})<f'({\sqrt{ab}})<f'({\frac{2ab}{a+b}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 28或0 | D. | 29或0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 3 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com