在△ABC中,角A為銳角,記角A,B,C所對(duì)的邊分別為a,b,c,設(shè)向量
.
m
=(cosA,sinA),
.
n
=(cosA,-sinA),且
.
m
.
n
=
1
2

(1)求角A的大;
(2)若a=
7
,c=
3
求△ABC的面積S.
考點(diǎn):余弦定理,平面向量數(shù)量積的運(yùn)算
專題:解三角形
分析:(1)由兩向量的坐標(biāo),利用平面向量的數(shù)量積運(yùn)算法則化簡(jiǎn)已知等式,求出cos2A的值,即可確定出A的度數(shù);
(2)利用余弦定理列出關(guān)系式,把a(bǔ),c,cosA的值代入求出b的值,再利用三角形面積公式即可求出三角形ABC面積S.
解答: 解:(1)∵
.
m
=(cosA,sinA),
.
n
=(cosA,-sinA),且
.
m
.
n
=
1
2
,
∴cos2A=
1
2

∵0<A<
π
2
,∴0<2A<π,
∴2A=
π
3
,
則A=
π
6
;
(2)∵a=
7
,c=
3
,cosA=
3
2
,
∴由余弦定理a2=b2+c2-2bccosA,得:7=b2+3-3b,
解得:b=-1(舍去)或b=4,
則S=
1
2
bcsinA=
3
點(diǎn)評(píng):此題考查了余弦定理,平面向量的數(shù)量積運(yùn)算,以及三角形的面積公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線ax+2y-1=0與直線2x-3y-1=0垂直,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

23.已知向量
m
=(1,
a
x
),
n
=(x,1)其中a∈R,函數(shù)f(x)=
m
n

(Ⅰ)試求函數(shù)f(x)的解析式;
(Ⅱ)試求當(dāng)a=1時(shí),函數(shù)f(log2x)在區(qū)間(1,+∞)上的最小值;
(Ⅲ)若函數(shù)f(x)在區(qū)間[1,+∞)上為增函數(shù),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)非空集合A={x|-1≤x≤m},集合S={y|y=x+1,x∈A},T={y|y=x2,x∈A}求使S=T成立的實(shí)數(shù)m的所有可能值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間四邊形ABCD的每條邊和對(duì)角線的長都等于a,點(diǎn)E,F(xiàn)分別是BC,AD的中點(diǎn),則
AE
AF
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
3
x-y+2=0的傾斜角為( 。
A、30°B、60°
C、150°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義一種運(yùn)算如下:
ab
cd
=ad-bc,則復(fù)數(shù)
1+i-1
23i
的共軛復(fù)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(2x+1)=x,則f(3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ的終邊過點(diǎn)P(-12,5),求角θ的三角函數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案