分析 (1)將極坐標(biāo)方程兩邊同乘ρ,去分母即可得到直角坐標(biāo)方程;
(2)利用直線l參數(shù)方程的標(biāo)準(zhǔn)形式,代入曲線C的普通方程,根據(jù)參數(shù)的幾何意義得出|AB|.
解答 解:(1)∵ρ=$\frac{6cosθ}{si{n}^{2}θ}$,∴ρ2sin2θ=6ρcosθ,
∴曲線C的直角坐標(biāo)方程為y2=6x.曲線為以($\frac{3}{2}$,0)為焦點,開口向右的拋物線.
(2)直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{3}{2}+\frac{t}{2}\\ y=\frac{{\sqrt{3}t}}{2}\end{array}\right.$,代入y2=6x得t2-4t-12=0.
解得t1=-2,t2=6.
∴|AB|=|t1-t2|=8.
點評 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的轉(zhuǎn)化,直線參數(shù)方程的幾何意義,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{11}$ | B. | -$\frac{5}{4}$ | C. | -$\frac{5}{11}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{10}{49}$ | B. | $\frac{12}{49}$ | C. | $\frac{6}{25}$ | D. | $\frac{4}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1]∪(3,+∞) | B. | [-1,3) | C. | (-∞,-1]∪[3,+∞) | D. | [-1,3] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com