分析 求得橢圓的a,b,c,可得F(-1,0),設(shè)直線l的方程為y=k(x+1),代入橢圓方程3x2+4y2=12,可得x的方程,運用韋達定理,以及向量共線的坐標(biāo)表示,化簡可得k的方程,解方程可得k的值,進而得到所求直線l的方程.
解答 解:橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的a=2,b=$\sqrt{3}$,c=1,
可得F(-1,0),當(dāng)直線l的斜率不存在時,|AF|=|BF|,不合題意;
設(shè)直線l的方程為y=k(x+1),代入橢圓方程3x2+4y2=12,可得
(3+4k2)x2+8k2x+4k2-12=0,
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=-$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,①
又$\frac{|AF|}{|BF|}$=2,即有$\overrightarrow{AF}$=2$\overrightarrow{FB}$,
可得(-1-x1,-y1)=2(x2+1,y2),
即有x1+2x2=-3,②
由①②消去x1,x2,可得
$\frac{16{k}^{4}-81}{(3+4{k}^{2})^{2}}$=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,
化簡可得4k2=5,解得k=±$\frac{\sqrt{5}}{2}$,
所以直線l的方程為y=±$\frac{\sqrt{5}}{2}$(x+1).
點評 本題考查直線和橢圓方程聯(lián)立,運用韋達定理,考查向量共線的坐標(biāo)表示,以及化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 9 | C. | 11 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3016 | B. | 3020 | C. | 3024 | D. | 3028 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -$\frac{1}{3}$ | C. | -3 | D. | 3或-$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | lna<-2b | B. | lna≤-2b | C. | lna>-2b | D. | lna≥-2b |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com