1.已知a=x2+x+$\sqrt{2}$,b=lg3,$c={e^{-\frac{1}{2}}}$,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.c<a<bC.c<b<aD.b<c<a

分析 利用二次函數(shù)、對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)求解.

解答 解:∵a=x2+x+$\sqrt{2}$=(x+$\frac{1}{2}$)2+$\sqrt{2}-\frac{1}{4}$>1,
b=lg3<log93=$\frac{1}{2}$,
$c={e^{-\frac{1}{2}}}$=$\frac{1}{\sqrt{e}}$∈($\frac{1}{2},1$),
∴b<c<a.
故選:D.

點評 本題考查三個數(shù)的大小的比較,是基礎(chǔ)題,解題時要認真審題,注意二次函數(shù)、對數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=blnx+x-$\frac{1}{x}$(b∈R).
(1)若曲線y=f(x)在點(1,2)處的切線與直線x-y+3=0垂直,求實數(shù)b的值;
(2)若函數(shù)f(x)在[1,+∞)上單調(diào)遞增,求實數(shù)b的取值范圍;
(3)已知g(x)=$\frac{1}{2}$x2+(t-1)x+$\frac{1}{x}$,t≤-$\frac{{3\sqrt{2}}}{2}$,h(x)=f(x)+g(x),當b=1時,h(x)有兩個極值點x1,x2,且x1<x2,求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知變量x、y滿足約束條件$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x+1≥0}\end{array}}\right.$.
(1)畫出可行域(過程不要求);
(2)求可行域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.用適當?shù)姆柼羁眨?br />(1)2∈{x|x2=2x}
(2){3,4,8}⊆Z;
(3)1∈{x|x2=x}; 
(4)∅?{x|x2-1=0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=m-$\frac{2}{{2}^{x}+1}$,(m∈R).
(1)試判斷f(x)的單調(diào)性,并證明你的結(jié)論;
(2)是否存在實數(shù)m使函數(shù)f(x)為奇函數(shù)?
(3)對于(2)中的函數(shù)f(x),若f(t+1)+f(t)≥0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知a、b都為集合{-2,0,1,3,4}中的元素,則函數(shù)f(x)=(a2-2)x+b為增函數(shù)的概率是( 。
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)是定義在R上的奇函數(shù),當x≤0時,f(x)=(x+2)e-x-2(其中e是自然對數(shù)的底數(shù),e=2.71828…).
(Ⅰ) 當x>0時,求f(x)的解析式;
(Ⅱ) 若x∈[0,2]時,方程f(x)=m有實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)f(x)=ax5+bx3+cx+7(其中a,b,c為常數(shù),x∈R),若f(-2011)=-17,則f(2011)=31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖是某幾何體的三視圖,則該幾何體的表面積為(  )
A.80+16$\sqrt{2}$+16$\sqrt{3}$B.80+12$\sqrt{2}$+16$\sqrt{3}$C.80+16$\sqrt{2}$+12$\sqrt{3}$D.80+12$\sqrt{2}$+12$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案