等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6,
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列{}的前n項和.
【答案】分析:(Ⅰ)設(shè)出等比數(shù)列的公比q,由a32=9a2a6,利用等比數(shù)列的通項公式化簡后得到關(guān)于q的方程,由已知等比數(shù)列的各項都為正數(shù),得到滿足題意q的值,然后再根據(jù)等比數(shù)列的通項公式化簡2a1+3a2=1,把求出的q的值代入即可求出等比數(shù)列的首項,根據(jù)首項和求出的公比q寫出數(shù)列的通項公式即可;
(Ⅱ)把(Ⅰ)求出數(shù)列{an}的通項公式代入設(shè)bn=log3a1+log3a2+…+log3an,利用對數(shù)的運(yùn)算性質(zhì)及等差數(shù)列的前n項和的公式化簡后,即可得到bn的通項公式,求出倒數(shù)即為的通項公式,然后根據(jù)數(shù)列的通項公式列舉出數(shù)列的各項,抵消后即可得到數(shù)列{}的前n項和.
解答:解:(Ⅰ)設(shè)數(shù)列{an}的公比為q,由a32=9a2a6得a32=9a42,所以q2=
由條件可知各項均為正數(shù),故q=
由2a1+3a2=1得2a1+3a1q=1,所以a1=
故數(shù)列{an}的通項式為an=
(Ⅱ)bn=++…+=-(1+2+…+n)=-,
=-=-2(-
++…+=-2[(1-)+(-)+…+(-)]=-,
所以數(shù)列{}的前n項和為-
點(diǎn)評:此題考查學(xué)生靈活運(yùn)用等比數(shù)列的通項公式化簡求值,掌握對數(shù)的運(yùn)算性質(zhì)及等差數(shù)列的前n項和的公式,會進(jìn)行數(shù)列的求和運(yùn)算,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的各均為正數(shù),且a1+2a2=3,a42=4a3a7,則數(shù)列{an}的通項公式為
an =
3
2n
an =
3
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知等比數(shù)列{an}的各均為正數(shù),且數(shù)學(xué)公式,則數(shù)列{an}的通項公式為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等比數(shù)列{an}的各均為正數(shù),且a1+2a2=3,a42=4a3a7,則數(shù)列{an}的通項公式為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等比數(shù)列{an}的各均為正數(shù),且a1+2a2=3,a42=4a3a7,則數(shù)列{an}的通項公式為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省常州市教育學(xué)會高三1月學(xué)業(yè)水平監(jiān)測數(shù)學(xué)試題(解析版) 題型:解答題

已知等比數(shù)列{an}的各均為正數(shù),且,則數(shù)列{an}的通項公式為   

查看答案和解析>>

同步練習(xí)冊答案