分析 (1)由平面幾何知識可知OABC為正方形,OB中點為$(\frac{1}{2},\frac{1}{2})$,OB斜率為1,即可求直線AC的方程;
(2)若l1⊥l2,且l1,l2與圓B分別相交于P,Q兩點,△OPQ的面積$S=\frac{1}{2}•|OP|•|OQ|=\frac{1}{2}•2\sqrt{2}cosθ•2\sqrt{2}sinθ=2sin2θ≤2$,即可求△OPQ面積的最大值.
解答 解:(1)由平面幾何知識可知OABC為正方形,OB中點為$(\frac{1}{2},\frac{1}{2})$,OB斜率為1,
∴AC:x+y-1=0.
(2)∵OP⊥OQ,∴PQ為圓B的直徑,且$|OB|=|BP|=|BQ|=\sqrt{2}$,設∠OPQ=θ,
則$|OP|=2\sqrt{2}cosθ$,$|OQ|=2\sqrt{2}sinθ$,
∴△OPQ的面積$S=\frac{1}{2}•|OP|•|OQ|=\frac{1}{2}•2\sqrt{2}cosθ•2\sqrt{2}sinθ=2sin2θ≤2$,
當且僅當$θ=\frac{π}{4}$時,S取得最大值2.
點評 本題考查直線方程,考查三角形面積的計算,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | $\frac{1}{2}$或2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | $\frac{2+\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com