11.設(shè)a=lg$\frac{2}{3}$,b=lg$\frac{2}{5}$,c=lg$\frac{3}{2}$,則( 。
A.a>c>bB.b>c>aC.c>b>aD.c>a>b

分析 利用對(duì)數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=lg$\frac{2}{3}$,b=lg$\frac{2}{5}$,c=lg$\frac{3}{2}$,
$\frac{3}{2}>\frac{2}{3}>\frac{2}{5}$,
y=lgx是增函數(shù),
∴c>a>b.
故選:D.

點(diǎn)評(píng) 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)M(x,y)滿足條件$\sqrt{(x-1{)^2}+{y^2}}+\sqrt{(x+1{)^2}+{y^2}}=2\sqrt{2}$.
(1)求動(dòng)點(diǎn)M的軌跡E的方程;
(2)設(shè)直線y=kx+m(m≠0)與曲線E分別交于A,B兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn)(且C、D在A、B之間或同時(shí)在A、B之外).問(wèn):是否存在定值k,對(duì)于滿足條件的任意實(shí)數(shù)m,都有△OAC的面積與△OBD的面積相等,若存在,求k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖所示,△ABC是邊長(zhǎng)為6的等邊三角形,G是它的重心(三條中線的交點(diǎn)),過(guò)G的直線分別交線段AB、AC于E、F兩點(diǎn),∠AEG=θ.
(1)當(dāng)$θ=\frac{π}{4}$時(shí),求線段EG的長(zhǎng);
(2)當(dāng)θ在區(qū)間$[\frac{π}{6},\frac{π}{2}]$上變化時(shí),求$\frac{1}{EG}+\frac{1}{FG}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.m,n是空間兩條不同直線,α,β是兩個(gè)不同平面,下面有四個(gè)命題:
①m⊥α,n∥β,α∥β⇒m⊥n
②m⊥n,α∥β,m⊥α⇒n∥β
③m⊥n,α∥β,m∥α⇒n⊥β
④m⊥α,m∥n,α∥β⇒n⊥β
其中真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,在直四棱柱(側(cè)棱與底面垂直的四棱柱)ABCD-A1B1C1D1中,已知DC=DD1=2AD=2AB,AD⊥DC,AB∥DC,給出以下結(jié)論:
①異面直線A1B1與CD1所成的角為45°;
②D1C⊥AC1;
③在棱DC上存在一點(diǎn)E,使D1E∥平面A1BD,這個(gè)點(diǎn)為DC的中點(diǎn);
④在棱AA1上不存在點(diǎn)F,使三棱錐F-BCD的體積為直 四棱柱體積的$\frac{1}{5}$.
其中正確的有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知命題p:“曲線C1=$\frac{{x}^{2}}{{m}^{2}}+\frac{{y}^{2}}{2m+8}$=1表示焦點(diǎn)在x軸上的橢圓”,命題q:“曲線C2:$\frac{{x}^{2}}{m-t}+\frac{{y}^{2}}{m-t-1}=1$表示雙曲線”.
(1)若命題p是真命題,求m的取值范圍;
(2)若p是q的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$\overrightarrow a$=(2sinα,1),$\overrightarrow b$=(cosα,1),α∈(0,$\frac{π}{4}$).
(1)若$\overrightarrow a$∥$\overrightarrow b$,求tanα的值;
(2)若$\overrightarrow a$•$\overrightarrow b$=$\frac{9}{5}$,求sin(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.我國(guó)南北朝時(shí)代的數(shù)學(xué)家祖暅提出體積的計(jì)算原理(組暅原理):“冪勢(shì)既同,則積不容異”.“勢(shì)”即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處裁得兩幾何體的裁面積恒等,那么這兩個(gè)幾何體的體積相等,類比祖暅原理,如圖所示,在平面直角坐標(biāo)系中,圖1是一個(gè)形狀不規(guī)則的封閉圖形,圖2是一個(gè)矩形,且當(dāng)實(shí)數(shù)t取[0,4]上的任意值時(shí),直線y=t被圖1和圖2所截得的線段始終相等,則圖1的面積為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.先后拋擲一枚硬幣,出現(xiàn)“一次正面,一次反面”的概率為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案