解:(Ⅰ)根據(jù)題意:△a
n=a
n+1-a
n=(n+1)
2-(n+1)-n
2+n=5n-4 (2分)
∴△a
n+1-△a
n=6.
∴數(shù)列{Da
n}是首項(xiàng)為1,公差為5的等差數(shù)列.(3分)
(Ⅱ)由△
2a
n-△a
n+1+a
n=-2
n,∴△a
n+1-△a
n-△a
n+1+a
n=-2
n,?△a
n-a
n=2
n.(5分)
而△a
n=a
n+1-a
n,∴a
n+1-2a
n=2
n,∴
-
=
,(6分)
∴數(shù)列{
}構(gòu)成以
為首項(xiàng),
為公差的等差數(shù)列,
即
=
?a
n=n•2
n-1.(7分)
(Ⅲ)由(Ⅱ)知a
n=n•2
n-1,
∴b
n=
=
=
(9分)
∴當(dāng)n≥2,n∈N
*時(shí)
=
=
(
-
),
∴b
1+
+…+
=1+[(
-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=1+
(
+
-
-
)<1+
(
+
)=
.
當(dāng)n=1時(shí),b
1=1<
,顯然成立.
∴b
1+
+…+
<
.(12分)
分析:(Ⅰ)根據(jù)題意:△a
n=a
n+1-a
n=(n+1)
2-(n+1)-n
2+n=5n-4,所以△a
n+1-△a
n=6.由此能夠證明{△a
n}是等差數(shù)列.
(Ⅱ)由△
2a
n-△a
n+1+a
n=-2
n,知△a
n+1-△a
n-△a
n+1+a
n=-2
n,所以△a
n-a
n=2
n.由此入手能夠求出數(shù)列{a
n}的通項(xiàng)公式.
(Ⅲ)由a
n=n•2
n-1,b
n=
=
=
,當(dāng)n≥2,n∈N
*時(shí),
=
=
(
-
),由此入手,能夠證明b
1+
+…+
<
.
點(diǎn)評:第(Ⅰ)題考查等差數(shù)列的證明,解題時(shí)要注意等差數(shù)列性質(zhì)的合理運(yùn)用;第(Ⅱ)題考查數(shù)列通項(xiàng)公式的求解方法,解題時(shí)要注意構(gòu)造法的合理運(yùn)用;第(Ⅲ)題考查數(shù)列前n項(xiàng)和的證明,解題時(shí)要注意裂項(xiàng)求和法的合理運(yùn)用.