5.已知數(shù)列{an}中,a1=1,且滿足an+1=an+2n,n∈N+,則a10=( 。
A.19B.91C.101D.121

分析 由于a1=1,且滿足an+1=an+2n,n∈N+,利用a10=(a10-a9)+(a9-a8)+…+(a2-a1)+a1即可得出.

解答 解:∵a1=1,且滿足an+1=an+2n,n∈N+,
∴a10=(a10-a9)+(a9-a8)+…+(a2-a1)+a1
=2×(10-1)+2×(9-1)+…+2+1
=$2×\frac{9×(9+1)}{2}$+1
=91.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“累加求和”,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知f(x)是偶函數(shù),且x≥0時(shí),f(x)=3x,則f(-2)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知△ABC中,a,b,c分別為角A,B,C的對(duì)應(yīng)邊,A=30°,B=45°,a=7,則邊長(zhǎng)b為( 。
A.$\frac{7}{2}\sqrt{2}$B.$14\sqrt{2}$C.$7\sqrt{2}$D.$\frac{7}{3}\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)y=f(x)是定義在區(qū)間[-2,2]上的奇函數(shù),當(dāng)0≤x≤2時(shí)的圖象如圖所示,則y=f(x)的值域?yàn)閇-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.定義在(-∞,0)∪(0,+∞)上的偶函數(shù)y=f(x),當(dāng)x>0時(shí),f(x)=|lgx|.
(1)求x<0時(shí)f(x)的解析式;
(2)若存在四個(gè)互不相同的實(shí)數(shù)a,b,c,d使f(a)=f(b)=f(c)=f(d),求abcd的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},0≤x<a}\\{{2}^{x},x≥a}\end{array}\right.$,若存在實(shí)數(shù)b,使函數(shù)g(x)=f(x)-b有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,2)B.(2,+∞)C.(2,4)D.(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,CC1⊥底面ABC,AC⊥CB,點(diǎn)D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求證:AC1∥平面CDB1
(Ⅲ)設(shè)AB=2AA1,AC=BC,在線段A1B1上是否存在點(diǎn)M,使得BM⊥CB1?若存在,確定點(diǎn)M的位置;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在△ABC中,設(shè)A、B、C的對(duì)邊分別為a、b、c,
(1)若a=2且(2+b)•(sinA-sinB)=(c-b)sinC,求△ABC面積S的最大值
(2)△ABC為銳角三角形,且B=2C,若$\overrightarrow{m}$=(sinA,cosA),$\overrightarrow{n}$=(cosB,sinB),求|3$\overrightarrow{m}$-2$\overrightarrow{n}$|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=b•ax,(其中a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)A(1,6),B(3,24).
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=$\frac{1}{3}$(f(x))2-f(x)+1,x∈[0,2]的值域;
(3)若不等式($\frac{1}{a}$)${\;}^{x}+(\frac{1})^{x}+2m-3≥0$在x∈(-∞,1]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案