平面向量
a
b
的夾角為60°且|
a
|
=2,|
b
|
=1,則向量
a
+2
b
的模為( 。
分析:
a
b
的夾角為60°且|
a
|
=2,|
b
|
=1,知|
a
+2
b
|=
(
a
+2 
b
)
2
=
a
2
+4
a
b
+4
b
2
,由此能求出結(jié)果.
解答:解:∵
a
b
的夾角為60°且|
a
|
=2,|
b
|
=1,
|
a
+2
b
|=
(
a
+2 
b
)
2

=
a
2
+4
a
b
+4
b
2

=
4+8cos60°+4

=2
3

故選A.
點(diǎn)評(píng):本題考查平面向量的數(shù)量積及其運(yùn)算,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量
a
b
的夾角為
π
3
,若
a
=(2,0)
|b|
=1
,則|
a
+2
b
|
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•奉賢區(qū)一模)平面向量
a
b
的夾角為60°,
a
=(2,0),|
b
|=1 則|
a
+2
b
|=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•牡丹江一模)下列命題中,正確的是
(1)(2)(3)
(1)(2)(3)

(1)平面向量
a
b
的夾角為60°,
a
=(2,0)
,|
b
|=1
,則|
a
+
b
|
=
7

(2)在△ABC中,A,B,C的對(duì)邊分別為a,b,c,若acosC,bcosB,ccosA成等差數(shù)列則B=
π
3

(3)O是△ABC所在平面上一定點(diǎn),動(dòng)點(diǎn)P滿足:
OP
=
OA
+λ(
AB
sinC
+
AC
sinB
)
,λ∈(0,+∞),則直線AP一定通過(guò)△ABC的內(nèi)心
(4)設(shè)函數(shù)f(x)=
x-[x],x≥0
f(x+1),x<0
其中[x]表示不超過(guò)x的最大整數(shù),如[-1.3]=-2,[1.3]=1,則函數(shù)y=f(x)-
1
4
x-
1
4
不同零點(diǎn)的個(gè)數(shù)2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量
a
b
的夾角為60°,
a
=(1,0),|
b
|=2,則|2
a
-
b
|=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•濟(jì)寧二模)平面向量
a
b
的夾角為
π
3
a
=(2,0),|
b
|=1,則|
a
+
b
|等于( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案