已知f(x)=
1
x
,x∈[1,3],則函數(shù)f(x)的最小值為
1
3
1
3
分析:根據(jù)函數(shù)的解析式,先分析函數(shù)的單調(diào)性,進(jìn)而根據(jù)函數(shù)的單調(diào)性,可得函數(shù)在指定區(qū)間上的最值.
解答:解:∵f(x)=
1
x

f′(x)=-
1
x2

當(dāng)x∈[1,3]時(shí),f′(x)<0恒成立
f(x)=
1
x
,x∈[1,3]為減函數(shù)
當(dāng)x=3時(shí),f(x)取最小值為
1
3

故答案為:
1
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)單調(diào)性的性質(zhì),其中根據(jù)函數(shù)的解析式,分析函數(shù)的單調(diào)性,是解答的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

例2、(1)已知f(x+
1
x
)=x3+
1
x3
,求f(x).
(2)已知f(
2
x
+1)=lgx
,求f(x).
(3)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x).
(4)已知f(x)滿足2f(x)+f(
1
x
)=3x
,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
x
-1

(1)求函數(shù)f(x)的定義域;
(2)判斷并用定義證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x+
1
x
)=x2+
1
x2
-x-
1
x
-2,則f(x)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
x+1
(x≤1)
x-1
(x>1)
,則f[f(2)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x-
1
x
) =x2+
1
x2
,則f(x+1)的表達(dá)式為
(x+1)2+2
(x+1)2+2

查看答案和解析>>

同步練習(xí)冊(cè)答案