【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點(diǎn)E為SD的中點(diǎn).
(1)求證:直線SB∥平面ACE
(2)求證:直線AC⊥平面SBD.
【答案】(1)見解析(2)見解析
【解析】試題分析:(1)設(shè),根據(jù)三角形中位線性質(zhì)得OE∥SB,再根據(jù)線面平行判定定理得結(jié)論(2)由SD⊥平面ABCD得AC⊥SD,由菱形性質(zhì)得AC⊥BD,再由線面垂直判定定理得結(jié)論
試題解析:證明:(1)設(shè),連接OE,由題,O為BD的中點(diǎn),E為SD的中點(diǎn),∴OE∥SB
又∵, ,∴.
(2)∵ABCD為菱形,∴AC⊥BD,又∵SD⊥面ABCD, ,∴AC⊥SD,
而,∴AC⊥面SBD.
點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.
(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.
(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.
(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了更好地規(guī)劃進(jìn)貨的數(shù)量,保證蔬菜的新鮮程度,某蔬菜商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了8組數(shù)據(jù)作為研究對(duì)象,如下圖所示((噸)為買進(jìn)蔬菜的質(zhì)量, (天)為銷售天數(shù)):
2 | 3 | 4 | 5 | 6 | 7 | 9 | 12 | |
1 | 2 | 3 | 3 | 4 | 5 | 6 | 8 |
(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖;
(Ⅱ)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該蔬菜商店準(zhǔn)備一次性買進(jìn)25噸,則預(yù)計(jì)需要銷售多少天.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形為直角梯形, ,若是以為底邊的等腰直角三角形,且.
(1)證明: 平面;
(2)求直線與平面所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形的兩條對(duì)角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)在邊所在的直線上.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求矩形外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
分組 | 頻數(shù) | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計(jì) | 1 |
(1)求出表中及圖中的值;
(2)試估計(jì)他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等腰三角形,AB=AC.
(1)特殊情形:如圖1,當(dāng)DE∥BC時(shí),有DBEC.(填“>”,“<”或“=”)
(2)發(fā)現(xiàn)探究:若將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α(0°<α<180°)到圖2位置,則(1)中的結(jié)論還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由.
(3)拓展運(yùn)用:如圖3,P是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,,,,,點(diǎn)在線段上.
(Ⅰ)證明;
(Ⅱ)若是中點(diǎn),證明平面;
(Ⅲ)當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com