【題目】如圖,已知四邊形為直角梯形, ,若是以為底邊的等腰直角三角形,且.
(1)證明: 平面;
(2)求直線與平面所成的角的大小.
【答案】(1)見解析;(2) .
【解析】試題分析:
(1)要證與平面垂直,就要證與平面內兩條相交直線垂直,由已知與垂直,則有與平面垂直,從而,另外在可計算出的三邊長,由勾股定理逆定理可得,從而證得平面;(2)由(1)知兩兩垂直,因此以他們?yōu)?/span>軸建立空間直角坐標系,寫出各點坐標,求出平面的法向量與直線的方向向量,由這兩個向量夾角與直線與平面所成角的關系可得.
試題解析:
證明:由已知得: ,所以,即
在直角梯形ABCD中, , ,由是以為底邊的等腰直角三角形得:
由,得,
可算得:
所以: ,即PC⊥平面PAD.
(2)如圖建系,可得:
, , ,
,
,
設平面PBC的法向量為,則有
,令得: ,
設直線AB與平面PBC所成的角是,
所以直線AB與平面PBC所成的角是.
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的首項為a,公差為b,方程ax2-3x+2=0的解為1和b,
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=an·2n,求數(shù)列{bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知圓的圓心在直線上,且過點,與直線相切.
()求圓的方程.
()設直線與圓相交于,兩點.求實數(shù)的取值范圍.
()在()的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校準備組織師生共60人,從南靖乘動車前往廈門參加夏令營活動,動車票價格如表所示:(教師按成人票價購買,學生按學生票價購買).
運行區(qū)間 | 成人票價(元/張) | 學生票價(元/張) | ||
出發(fā)站 | 終點站 | 一等座 | 二等座 | 二等座 |
南靖 | 廈門 | 26 | 22 | 16 |
若師生均購買二等座票,則共需1020元.
(1)參加活動的教師有人,學生有人;
(2)由于部分教師需提早前往做準備工作,這部分教師均購買一等座票,而后續(xù)前往的教師和學生均購買二等座票.設提早前往的教師有x人,購買一、二等座票全部費用為y元.
①求y關于x的函數(shù)關系式;
②若購買一、二等座票全部費用不多于1032元,則提早前往的教師最多只能多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一枚質地均勻且四個面上分別標有1,2,3,4的正四面體先后拋擲兩次,其底面落于桌面上,記第一次朝下面的數(shù)字為,第二次朝下面的數(shù)字為.用表示一個基本事件.
請寫出所有基本事件;
求滿足條件“”為整數(shù)的事件的概率;
求滿足條件“”的事件的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐S-ABCD中,底面ABCD為菱形,SD⊥平面ABCD,點E為SD的中點.
(1)求證:直線SB∥平面ACE
(2)求證:直線AC⊥平面SBD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,AD的中點,連接BM,MN,BN.
(1)求證:BM=MN;
(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com