2.為弘揚(yáng)中國傳統(tǒng)文化,某校在高中三個(gè)年級(jí)中抽取甲、乙、丙三名同學(xué)進(jìn)行問卷調(diào)查.調(diào)查結(jié)果顯示這三名同學(xué)來自不同的年級(jí),加入了不同的三個(gè)社團(tuán):“楹聯(lián)社”、“書法社”、“漢服社”,還滿足如下條件:
(1)甲同學(xué)沒有加入“楹聯(lián)社”;
(2)乙同學(xué)沒有加入“漢服社”;
(3)加入“楹聯(lián)社”的那名同學(xué)不在高二年級(jí);
(4)加入“漢服社”的那名同學(xué)在高一年級(jí);
(5)乙同學(xué)不在高三年級(jí).
試問:甲同學(xué)所在的社團(tuán)是(  )
A.楹聯(lián)社B.書法社
C.漢服社D.條件不足無法判斷

分析 確定乙在高二,加入“書法社”,根據(jù)(1)甲同學(xué)沒有加入“楹聯(lián)社”,可得甲同學(xué)所在的社團(tuán)是漢服社.

解答 解:假設(shè)乙在高一,則加入“漢服社”,與(2)矛盾,
所以乙在高二,根據(jù)(3),可得乙加入“書法社”,
根據(jù)(1)甲同學(xué)沒有加入“楹聯(lián)社”,
可得甲同學(xué)所在的社團(tuán)是漢服社,
故選C.

點(diǎn)評(píng) 本題考查進(jìn)行簡單的合情推理,考查學(xué)生分析解決問題的能力,確定乙在高二,加入“書法社”是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某校為了解學(xué)生的學(xué)習(xí)情況,采用分層抽樣的方法從高一150人、高二120人、高三180人中抽取50人進(jìn)行問卷調(diào)查,則高三抽取的人數(shù)是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)正實(shí)數(shù)a,b滿足a+b=1,則( 。
A.$\frac{1}{a}+\frac{1}$有最大值4B.$\sqrt{ab}$有最小值 $\frac{1}{2}$C.$\sqrt{a}+\sqrt$有最大值$\sqrt{2}$D.a2+b2有最小值$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=lnx與函數(shù)g(x)=ax2-a的圖象在點(diǎn)(1,0)的切線相同,則實(shí)數(shù)a的值為( 。
A.1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{1}{2}$或-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足a1=1,an+1+an=$\sqrt{n+1}$-$\sqrt{n-1}$,n∈N*
(Ⅰ)求a2,a3,a4;
(Ⅱ)猜想數(shù)列{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.計(jì)算:
(Ⅰ)(1-2i)(3+4i)(-2+i)
(Ⅱ) (1+2i)÷(3-4i)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知分段函數(shù)y=$\left\{\begin{array}{l}{3-x,x<-1}\\{{x}^{2},-1≤x≤1}\\{x+1,x>1}\end{array}\right.$,若執(zhí)行如圖所示的程序框圖,則框圖中的條件應(yīng)該填寫(  )
A.x≥1?B.x≥-1?C.-1≤x≤2?D.x≤1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.?dāng)?shù)列{an}滿足a1=2,an+1=$\frac{1}{{1-{a_n}}}(n∈{N^+})$,則a2017=( 。
A.-2B.-1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知?jiǎng)訄AC與圓C1:(x-2)2+y2=1外切.又與直線l:x=-1相切
(1)求動(dòng)圓C的圓心的軌跡方程E;
(2)若動(dòng)點(diǎn)M為直線l上任一點(diǎn),過點(diǎn)P(1,0)的直線與曲線E相交干A,B兩點(diǎn).求證:kMA+kMB=2kMP

查看答案和解析>>

同步練習(xí)冊答案