【題目】設函數(shù) 若,則的最小值為__________; 若有最小值,則實數(shù)的取值范圍是_______.
【答案】
【解析】
(1)將a=1代入函數(shù),分析每段函數(shù)的最小值,則的最小值可求;(2)討論a<0,a=0和a>0時函數(shù)的單調(diào)性和最小值即可求解
(1)當a=1,,=()=()>0,1>x>ln2;()<0,x<ln2;故當=,單調(diào)遞增,故,又所以的最小值為0
(2) ①當a<0時,由(1)知=單調(diào)遞減,故()單調(diào)遞減,故故無最小值,舍去;
②當a=0時,f(x)最小值為-1,成立
③當a>0時,()單調(diào)遞增,故
對=,
當0<aln2,由(1)知,此時最小值在x=a處取得,成立
當a>ln2, 由(1)知,此時最小值為,即有最小值,綜上a
故答案為 ;
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了解高一新生的體質(zhì)健康狀況,對學生的體質(zhì)進行了測試. 現(xiàn)從男、女生中各隨機抽取人,把他們的測試數(shù)據(jù),按照《國家學生體質(zhì)健康標準》整理如下表. 規(guī)定:數(shù)據(jù)≥,體質(zhì)健康為合格.
等級 | 數(shù)據(jù)范圍 | 男生人數(shù) | 男生平均分 | 女生人數(shù) | 女生平均分 |
優(yōu)秀 |
| ||||
良好 |
| ||||
及格 |
| ||||
不及格 | 以下 | ||||
總計 | -- |
(I)從樣本中隨機選取一名學生,求這名學生體質(zhì)健康合格的概率;
(II)從男生樣本和女生樣本中各隨機選取一人,求恰有一人的體質(zhì)健康等級是優(yōu)秀的概率;
(III)表中優(yōu)秀、良好、及格、不及格四個等級的男生、女生平均分都接近(二者之差的絕對值不大于),但男生的總平均分卻明顯高于女生的總平均分.研究發(fā)現(xiàn),若去掉四個等級中一個等級的數(shù)據(jù),則男生、女生的總平均分也接近,請寫出去掉的這個等級.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線 ,M為直線上任意一點,過點M作拋物線C的兩條切線MA,MB,切點分別為A,B.
(1)當M的坐標為(0,-1)時,求過M,A,B三點的圓的方程;
(2)證明:以為直徑的圓恒過點M.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某紡織廠為了生產(chǎn)一種高端布料,準備從農(nóng)場購進一批優(yōu)質(zhì)棉花,廠方技術人員從農(nóng)場存儲的優(yōu)質(zhì)棉花中隨機抽取了處棉花,分別測量了其纖維長度(單位:)的均值,收集到個樣本數(shù)據(jù),并制成如下頻數(shù)分布表:
(1)求這個樣本數(shù)據(jù)的平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點值作代表);
(2)將收集到的數(shù)據(jù)繪制成直方圖可以認為這批棉花的纖維長度服從分布,其中.
①利用正態(tài)分布,求;
②紡織廠將農(nóng)場送來的這批優(yōu)質(zhì)棉進行二次檢驗,從中隨機抽取處測量其纖維均值,數(shù)據(jù)如下:
若個樣本中纖維均值的頻率不低于①中,即可判斷該批優(yōu)質(zhì)棉花合格,否則認為農(nóng)場運送是摻雜了次品,判斷該批棉花不合格.按照此依據(jù)判斷農(nóng)場送來的這批棉花是否為合格的優(yōu)質(zhì)棉花,并說明理由.
附:若,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了預測下月產(chǎn)品銷售情況,找出了近7個月的產(chǎn)品銷售量(單位:萬件)的統(tǒng)計表:
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售量(萬件) |
但其中數(shù)據(jù)污損不清,經(jīng)查證,,.
(1)請用相關系數(shù)說明銷售量與月份代碼有很強的線性相關關系;
(2)求關于的回歸方程(系數(shù)精確到0.01);
(3)公司經(jīng)營期間的廣告宣傳費(單位:萬元)(),每件產(chǎn)品的銷售價為10元,預測第8個月的毛利潤能否突破15萬元,請說明理由.(毛利潤等于銷售金額減去廣告宣傳費)
參考公式及數(shù)據(jù):,相關系數(shù),當時認為兩個變量有很強的線性相關關系,回歸方程中斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,, ,,,,為側(cè)棱上一點.
(Ⅰ)若,求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)在側(cè)棱上是否存在點,使得平面?若存在,求出線段的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】南北朝時代的偉大科學家祖暅在數(shù)學上有突出貢獻,他在實踐的基礎上提出祖暅原理:“冪勢既同,則積不容異”. 其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為,被平行于這兩個平面的任意平面截得的兩個截面面積分別為,則“相等”是“總相等”的
A. 充分而不必要條件B. 必要而不充分條件
C. 充分必要條件D. 既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓心在x軸上的圓C與直線切于點,圓.
(1)求圓C的標準方程;
(2)已知,圓P與x軸相交于兩點(點M在點N的右側(cè)),過點M任作一條傾斜角不為0的直線與圓C相交于兩點.問:是否存在實數(shù)a,使得?若存在,求出實數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com