5.直線x+2y+2=0在y軸上的截距為-1.

分析 通過x=0求出y的值,即可得到結(jié)果.

解答 解:直線x+2y+2=0,當(dāng)x=0時,y=-1,
直線x+2y+2=0在y軸上的截距為:-1
故答案為:-1.

點評 本題考查直線方程的應(yīng)用,直線的截距的求法,基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=$\frac{2-i}{1+2i}$的虛部為( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)集合P={x|${∫}_{0}^{x}$(3t2-8t+3)dt=0,x>0},則集合P的子集個數(shù)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=x2-8lnx+3.
(1)求曲線y=f(x)在點(1,4)處的切線方程;
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.棱長為4的正方體ABCD-A1B1C1D1的內(nèi)切球的表面積為( 。
A.B.16πC.24πD.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=2$\sqrt{3}$sinxcosx+cos2x.
(Ⅰ)求函數(shù)f(x)的最大值及其相應(yīng)的x的值;
(Ⅱ)若函數(shù)f(x)在區(qū)間($\frac{π}{6}$,m)上單調(diào)遞減,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C所對的邊長分別為a,b,c,B=$\frac{π}{3}$.
(1)若a=3,b=$\sqrt{7}$,求c的值;
(2)若f(A)=sinA($\sqrt{3}$cosA-sinA),a=$\sqrt{7}$,求f(A)的最大值及此時△ABC的外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在四棱錐P-ABCD中,直線AP,AB,AD兩兩相互垂直,且AD∥BC,AP=AB=AD=2BC.
(1)求異面直線PC與BD所成角的余弦值;
(2)求鈍二面角B-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某幾何圖形的三視圖和尺寸的標(biāo)示如圖所示,該幾何圖形的體積或面積分別是(  )
A.$\frac{1}{6}$a3,$\frac{{\sqrt{3}}}{2}$a2B.$\frac{1}{6}$a3,$\frac{{({3+\sqrt{3}}){a^2}}}{2}$C.$\frac{{\sqrt{2}}}{12}$a3,$\frac{{\sqrt{3}}}{2}$a2D.$\frac{{\sqrt{2}}}{12}$a3,$\frac{{({3+\sqrt{3}}){a^2}}}{2}$

查看答案和解析>>

同步練習(xí)冊答案