已知等差數(shù)列{an}的前n項和為Sn,若m>1,且am-1+am+1-am2=0,S2m-1=38,則m等于(  )
分析:可得:am-1+am+1=2am,代入am-1+am+1-am2=0中,即可求出第m項的值,再由求和公式代入已知可得m的方程,解之可得.
解答:解:根據等差數(shù)列的性質可得:am-1+am+1=2am
則am-1+am+1-am2=am(2-am)=0,
解得:am=0或am=2,
若am等于0,顯然S2m-1=
(2m-1)(a1+a2m-1)
2

=(2m-1)am=38不成立,故有am=2,
∴S2m-1=(2m-1)am=4m-2=38,
解得m=10.
故選C
點評:本題考查學生掌握等差數(shù)列的性質,靈活運用等差數(shù)列的前n項和的公式化簡求值的能力,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案