【題目】設(shè)命題p:m∈R,使 是冪函數(shù),且在(0,+∞)上單調(diào)遞減;命題q:x∈(2,+∞),x2>2x , 則下列命題為真的是( )
A.p∧(q)
B.(p)∧q
C.p∧q
D.(p)∨q
【答案】A
【解析】解:由m﹣1=1,解得:m=2,故f(x)= ,在(0,+∞)上單調(diào)遞減;
故命題p是真命題;
令x=4,則x2=2x;
故命題q是假命題;
故p∧(¬q)是真命題,
所以答案是:A.
【考點(diǎn)精析】本題主要考查了復(fù)合命題的真假的相關(guān)知識點(diǎn),需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時(shí)為真,其他情況時(shí)為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時(shí)為假,其他情況時(shí)為真才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=(x+a)(bx+2a)(常數(shù)a、b∈R)是偶函數(shù),且它的值域?yàn)椋ī仭蓿?],則該函數(shù)的解析式f(x)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中, =(2,﹣2), =(x,y), =(1, ).
(1)若 ∥ ,求x,y之間的關(guān)系式;
(2)滿足(1)的同時(shí)又有 ⊥ ,求x,y的值以及四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:對任意的 ,sinx≤ax+b≤tanx恒成立,其中a,b∈R.
(1)若a=1,b=0,求證:命題p為真命題.
(2)若命題p為真命題,求a,b的所有值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(﹣1,0),B(1,1),C(2,0),點(diǎn)P是平面直角坐標(biāo)系xOy上一點(diǎn),且 =m (m,n∈R),
(1)若m=1,且 ∥ ,試求實(shí)數(shù)n的值;
(2)若點(diǎn)P在△ABC三邊圍成的區(qū)域(含邊界)上,求m+3n的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 其中a2=﹣2,S6=6.
(1)求數(shù)列{an}的通項(xiàng);
(2)求數(shù)列{|an|}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(I)如果 在 處取得極值,求 的值.
(II)求函數(shù) 的單調(diào)區(qū)間.
(III)當(dāng) 時(shí),過點(diǎn) 存在函數(shù)曲線 的切線,求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將三顆骰子各擲一次,記事件A=“三個(gè)點(diǎn)數(shù)都不同”,B=“至少出現(xiàn)一個(gè)6點(diǎn)”,則條件概率P(A|B),P(B|A)分別是( )
A. ,
B. ,
C. ,
D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= sin(2x+φ)(|φ|< )的圖象關(guān)于直線x= 對稱,且當(dāng)x1 , x2∈(﹣ ,﹣ ),x1≠x2時(shí),f(x1)=f(x2),則f(x1+x2)等于( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com