【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(1)點(diǎn)在曲線上,且曲線在點(diǎn)處的切線與直線:垂直,求點(diǎn)的直角坐標(biāo);
(2)設(shè)直線與曲線有且只有一個(gè)公共點(diǎn),求直線的斜率的取值范圍.
【答案】(1)點(diǎn)的坐標(biāo)為;(2).
【解析】
(1)求出曲線的普通方程,根據(jù)題意求出直線的方程,再將直線的方程與曲線的方程聯(lián)立,即可求得點(diǎn)的坐標(biāo);
(2)設(shè)直線的方程為(其中為直線的斜率),求出直線與半圓相切時(shí)直線的斜率的值,設(shè)點(diǎn),,,求出直線、的斜率,利用數(shù)形結(jié)合思想可求得直線的斜率的取值范圍.
(1)由,所以,曲線的直角坐標(biāo)方程為:,
點(diǎn)在曲線上,且曲線在點(diǎn)處的切線與直線:垂直,
直線與直線:平行,
直線的斜率,即的方程為,
由,得:.
即點(diǎn)的坐標(biāo)為;
(2)將直線化為普通方程:(為直線的斜率),
當(dāng)直線與半圓相切時(shí),則有.
,或,
設(shè)點(diǎn),,,則,.
由圖象知,當(dāng)直線與半圓相切時(shí),則,此時(shí).
因此,當(dāng)直線與半圓有且只有一個(gè)公共點(diǎn)時(shí),直線的斜率的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上.
(1)若拋物線C經(jīng)過(guò)點(diǎn),求C的標(biāo)準(zhǔn)方程;
(2)拋物線C的焦點(diǎn)(m是大于零的常數(shù)),若過(guò)點(diǎn)F的直線與C交于 兩點(diǎn),,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,命題:對(duì),不等式恒成立;命題,使得成立.
(1)若為真命題,求的取值范圍;
(2)當(dāng)時(shí),若假,為真,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,點(diǎn)為坐標(biāo)原點(diǎn),一條直線與圓相切并與橢圓交于不同的兩點(diǎn).
(1)設(shè),求的表達(dá)式;
(2)若,求直線的方程;
(3)若,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩地相距,某船從地逆水到地,水速為,船在靜水中的速度為.若船每小時(shí)的燃料費(fèi)與其在靜水中速度的平方成正比,當(dāng),每小時(shí)的燃料費(fèi)為元,為了使全程燃料費(fèi)最省,船的實(shí)際速度應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司年會(huì)舉行抽獎(jiǎng)活動(dòng),每位員工均有一次抽獎(jiǎng)機(jī)會(huì).活動(dòng)規(guī)則如下:一只盒子里裝有大小相同的6個(gè)小球,其中3個(gè)白球,2個(gè)紅球,1個(gè)黑球,抽獎(jiǎng)時(shí)從中一次摸出3個(gè)小球,若所得的小球同色,則獲得一等獎(jiǎng),獎(jiǎng)金為300元;若所得的小球顏色互不相同,則獲得二等獎(jiǎng),獎(jiǎng)金為200元;若所得的小球恰有2個(gè)同色,則獲得三等獎(jiǎng),獎(jiǎng)金為100元.
(1)求小張?jiān)谶@次活動(dòng)中獲得的獎(jiǎng)金數(shù)的概率分布及數(shù)學(xué)期望;
(2)若每個(gè)人獲獎(jiǎng)與否互不影響,求該公司某部門3個(gè)人中至少有2個(gè)人獲二等獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是
A. y與x具有正的線性相關(guān)關(guān)系
B. 回歸直線過(guò)樣本點(diǎn)的中心(,)
C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))
(1)若在R上單調(diào)遞增,求正數(shù)a的取值范圍;
(2)若f(x)在處導(dǎo)數(shù)相等,證明:;
(3)當(dāng)時(shí),證明:對(duì)于任意,若,則直線與曲線有唯一公共點(diǎn)(注:當(dāng)時(shí),直線與曲線的交點(diǎn)在y軸兩側(cè)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算機(jī)考試分理論考試與實(shí)際操作兩部分,每部分考試成績(jī)只記“合格”與“不合格”,兩部分考試都“合格”者,則計(jì)算機(jī)考試“合格”,并頒發(fā)合格證書甲、乙、丙三人在理論考試中“合格”的概率依次為,,,在實(shí)際操作考試中“合格”的概率依次為,,,所有考試是否合格相互之間沒有影響.
(1)假設(shè)甲、乙、丙三人同時(shí)進(jìn)行理論與實(shí)際操作兩項(xiàng)考試,誰(shuí)獲得合格證書的可能性最大?
(2)這三人進(jìn)行理論與實(shí)際操作兩項(xiàng)考試后,求恰有兩人獲得合格證書的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com