如圖,在棱長(zhǎng)為的正方體
中,點(diǎn)
是棱
的中點(diǎn),點(diǎn)
在棱
上,且滿(mǎn)足
.
(1)求證:;
(2)在棱上確定一點(diǎn)
,使
、
、
、
四點(diǎn)共面,并求此時(shí)
的長(zhǎng);
(3)求幾何體的體積.
(1)詳見(jiàn)解析;(2);(3)
.
解析試題分析:(1)連接,先由正方體的性質(zhì)得到
,以及
平面
,從而得到
,利用直線(xiàn)與平面垂直的判定定理可以得到
平面
,于是得到
;(2)假設(shè)四點(diǎn)
、
、
、
四點(diǎn)共面,利用平面與平面平行的性質(zhì)定理得到
,
,于是得到四邊形
為平行四邊形,從而得到
的長(zhǎng)度,再結(jié)合勾股定理得到
的長(zhǎng)度,最終得到
的長(zhǎng)度;(3)連接
,由正方體的性質(zhì)得到
,結(jié)合(1)中的結(jié)論
平面
,得到
平面
,然后選擇以點(diǎn)
為頂點(diǎn),
為高,四邊形
為底面的四棱錐,利用錐體的體積公式計(jì)算幾何體
的體積.
試題解析:(1)如下圖所示,連接,
由于為正方體,所以四邊形
為正方形,所以
,
且平面
,
,
,
平面
,
平面
,
;
(2)如下圖所示,假設(shè)、
、
、
四點(diǎn)共面,則
、
、
、
四點(diǎn)確定平面
,
由于為正方體,所以平面
平面
,
平面
平面
,平面
平面
,
由平面與平面平行的判定定理得,
同理可得,因此四邊形
為平行四邊形,
,
在中,
,
,
,
由勾股定理得,
在直角梯形中,下底
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線(xiàn),點(diǎn)E在線(xiàn)段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點(diǎn)F是AB的中點(diǎn).圖①
圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線(xiàn)AC與平面BDG的交點(diǎn),求三棱錐B-DEG的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四面體ABCD中,△ABC與△DBC都是邊長(zhǎng)為4的正三角形.
(1)求證:BC⊥AD;
(2)試問(wèn)該四面體的體積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)棱長(zhǎng)AD的大�。蝗舨淮嬖�,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知平行四邊形ABCD中,BC=2,BD⊥CD,四邊形ADEF為正方形,平面ADEF⊥平面ABCD.記CD=x,V(x)表示四棱錐F-ABCD的體積.
(1)求V(x)的表達(dá)式.
(2)求V(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
右圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
(1)請(qǐng)畫(huà)出該幾何體的三視圖;
(2)求四棱錐BCEPD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示是一幾何體的直觀(guān)圖、正(主)視圖、側(cè)(左)視圖、俯視圖.
(1)若F為PD的中點(diǎn),求證:AF⊥面PCD;
(2)求幾何體BEC-APD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,長(zhǎng)方體中,
為線(xiàn)段
的中點(diǎn),
.
(Ⅰ)證明:⊥平面
;
(Ⅱ)求點(diǎn)到平面
的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com