如圖,長(zhǎng)方體中,為線段的中點(diǎn),.

(Ⅰ)證明:⊥平面;
(Ⅱ)求點(diǎn)到平面的距離.

(Ⅰ)略;(Ⅱ) 1

解析試題分析:(Ⅰ)由勾股定理可證,由線面垂直可得,則根據(jù)線面垂直的定義可證得⊥平面。(Ⅱ)由體積轉(zhuǎn)化法可求到平面的距離,即
試題解析:(Ⅰ),,   2分
中點(diǎn),,

,.   4分

 ⊥平面 6分
(Ⅱ)設(shè)點(diǎn)的距離為,
    8分

由(Ⅰ)知⊥平面, 
    10分
     12分
考點(diǎn):線線垂直、線面垂直,點(diǎn)到面的距離及錐體體積。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在棱長(zhǎng)為的正方體中,點(diǎn)是棱的中點(diǎn),點(diǎn)在棱上,且滿足.

(1)求證:;
(2)在棱上確定一點(diǎn),使、、四點(diǎn)共面,并求此時(shí)的長(zhǎng);
(3)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.

(1)若F為PD的中點(diǎn),求證:AF⊥面PCD;
(2)證明:BD∥面PEC;
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,是圓柱體的一條母線,過(guò)底面圓的圓心,是圓上不與點(diǎn)、重合的任意一點(diǎn),已知棱,

(1)求證:;
(2)將四面體繞母線轉(zhuǎn)動(dòng)一周,求的三邊在旋轉(zhuǎn)過(guò)程中所圍成的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠為了制造一個(gè)實(shí)心工件,先畫(huà)出了這個(gè)工件的三視圖(如圖),其中正視圖與側(cè)視圖為兩個(gè)全等的等腰三角形,俯視圖為一個(gè)圓,三視圖尺寸如圖所示(單位cm);

(1)求出這個(gè)工件的體積;
(2)工件做好后,要給表面噴漆,已知噴漆費(fèi)用是每平方厘米1元,現(xiàn)要制作10個(gè)這樣的工件,請(qǐng)計(jì)算噴漆總費(fèi)用(精確到整數(shù)部分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知平面,四邊形是矩形,,,點(diǎn),分別是的中點(diǎn).

(Ⅰ)求三棱錐的體積;
(Ⅱ)求證:平面;
(Ⅲ)若點(diǎn)為線段中點(diǎn),求證:∥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐中,底面是邊長(zhǎng)為1的正方形,平面, ,的中點(diǎn),在棱上.

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥平面ABC,△ABC為正三角形,且側(cè)面AA1C1C是邊長(zhǎng)為2的正方形,E是的中點(diǎn),F在棱CC1上。

(1)當(dāng)CF時(shí),求多面體ABCFA1的體積;
(2)當(dāng)點(diǎn)F使得A1F+BF最小時(shí),判斷直線AE與A1F是否垂直,并證明的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知四棱錐平面,底面為直角梯形,,且,.

(1)點(diǎn)在線段上運(yùn)動(dòng),且設(shè),問(wèn)當(dāng)為何值時(shí),平面,并證明你的結(jié)論;
(2)當(dāng),且,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案