【題目】現(xiàn)擬建一個(gè)糧倉(cāng),如圖1所示,糧倉(cāng)的軸截而如圖2所示,EDECADBC,BCAB,EFAB,CDEF于點(diǎn)GEFFC10m

1)設(shè)∠CFBθ,求糧倉(cāng)的體積關(guān)于θ的函數(shù)關(guān)系式;

2)當(dāng)sinθ為何值時(shí),糧倉(cāng)的體積最大?

【答案】(1),(2)時(shí),糧倉(cāng)的體積最大.

【解析】

(1)根據(jù)已知條件分別求出,,再代入體積公式即可.

(2)令,將(1)問的關(guān)系式轉(zhuǎn)化為三次函數(shù),求導(dǎo)即可得到最大值時(shí)的正弦值.

(1)因?yàn)?/span>,且,所以四邊形是平行四邊形.

又因?yàn)?/span>,所以四邊形是矩形,

,所以,

所以是三角形的中線.

因?yàn)?/span>,所以,,

所以

化簡(jiǎn)得,.

(2)令,

則糧倉(cāng)的體積

,

,即,解得(舍去),

當(dāng)時(shí), 0,y上單調(diào)遞增;

當(dāng)時(shí),y上單調(diào)遞減,

所以當(dāng)時(shí),即時(shí),糧倉(cāng)的體積最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)線段上是否存在點(diǎn),使得直線平面若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)要完成下列3項(xiàng)抽樣調(diào)查:①?gòu)?/span>20罐奶粉中抽取4罐進(jìn)行食品安全衛(wèi)生檢查;②從某社區(qū)100戶高收入家庭,270戶中等收入家庭,80戶低收入家庭中選出45戶進(jìn)行消費(fèi)水平調(diào)查;③某中學(xué)報(bào)告廳有28排,每排有35個(gè)座位,一次報(bào)告會(huì)恰好坐滿了聽眾,報(bào)告會(huì)結(jié)束后,為了聽取意見,需要請(qǐng)28名聽眾進(jìn)行座談.較為合理的抽樣方法是(

A.①系統(tǒng)抽樣;②簡(jiǎn)單隨機(jī)抽樣;③分層抽樣

B.①簡(jiǎn)單隨機(jī)抽樣;②分層抽樣;③系統(tǒng)抽樣

C.①分層抽樣;②系統(tǒng)抽樣;③簡(jiǎn)單隨機(jī)抽樣

D.①簡(jiǎn)單隨機(jī)抽樣;②系統(tǒng)抽樣;③分層抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x2=4y

(1)求拋物線在點(diǎn)P(2,1)處的切線方程;

(2)若不過原點(diǎn)的直線l與拋物線交于A,B兩點(diǎn)(如圖所示),且OAOB,|OA|=|OB|,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體中,點(diǎn)是底面的中心,是線段的上一點(diǎn)。

(1)若的中點(diǎn),求直線與平面所成角的正弦值;

(2)能否存在點(diǎn)使得平面平面,若能,請(qǐng)指出點(diǎn)的位置關(guān)系,并加以證明;若不能,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)在圓柱的底面圓上,為圓的直徑.

(1)若圓柱的體積,,求異面直線所成的角(用反三角函數(shù)值表示結(jié)果);

(2)若圓柱的軸截面是邊長(zhǎng)為2的正方形,四面體的外接球?yàn)榍?/span>,求兩點(diǎn)在球上的球面距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)是定義在R上的單調(diào)函數(shù),若函數(shù)恰有個(gè)零點(diǎn),則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案