分析 設(shè)所求向量的坐標(biāo)為(a,b),根據(jù)題意可得$\left\{\begin{array}{l}{{a}^{2}+^{2}=1}\\{3a-4b=0}\end{array}\right.$,解可得a,b的值,進(jìn)而可得答案.
解答 解:設(shè)與向量$\overrightarrow{a}$垂直的單位向量為(a,b),
根據(jù)題意可得$\left\{\begin{array}{l}{{a}^{2}+^{2}=1}\\{3a-4b=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{a=\frac{4}{5}}\\{b=\frac{3}{5}}\end{array}\right.$,或$\left\{\begin{array}{l}{a=-\frac{4}{5}}\\{b=-\frac{3}{5}}\end{array}\right.$,
則單位向量為($\frac{4}{5}$,$\frac{3}{5}$)或(-$\frac{4}{5}$,-$\frac{3}{5}$).
故答案為:($\frac{4}{5}$,$\frac{3}{5}$)或(-$\frac{4}{5}$,-$\frac{3}{5}$).
點(diǎn)評(píng) 解決此類問題的關(guān)鍵是熟練掌握單位向量的求法,方法是:一般先設(shè)出向量的坐標(biāo),再由題意得到關(guān)系式,同時(shí)考查向量的數(shù)量積的坐標(biāo)表示.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<m<2 | B. | 0<m<$\sqrt{2}$ | C. | -$\sqrt{2}$<m<$\sqrt{2}$ | D. | -$\sqrt{2}$<m<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com