【題目】如圖,圓形紙片的圓心為O,半徑為5,該紙片上的等邊三角形ABC的中心為O,點(diǎn)D,E,F為圓O上的點(diǎn),,,分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起,,,使得D,E,F重合于P,得到三棱錐.
(1)當(dāng)時,求三棱錐的體積;
(2)當(dāng)的邊長變化時,三棱錐的側(cè)面和底面所成二面角為,求的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ax2-x(x>0,a∈R).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)求證:當(dāng)a≤0時,曲線y=f(x)上任意一點(diǎn)處的切線與該曲線只有一個公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)設(shè)函數(shù)在處的切線方程為,若函數(shù)是上的單調(diào)增函數(shù),求的值;
(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點(diǎn)?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1=,(n∈N*)
(1)求數(shù)列{an}的通項(xiàng)公式an,
(2)若數(shù)列{bn}滿足bn=(3n﹣1)an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(﹣1)nλ<Tn對一切n∈N*恒成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,,分別是橢圓的左,右焦點(diǎn),點(diǎn)P是橢圓E上一點(diǎn),滿足軸,.
(1)求橢圓E的離心率;
(2)過點(diǎn)的直線l與橢圓E交于兩點(diǎn)A,B,若在橢圓B上存在點(diǎn)Q,使得四邊形OAQB為平行四邊形,求直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣4x+3=0,過原點(diǎn)的直線l與圓C有公共點(diǎn).
(1)求直線l斜率k的取值范圍;
(2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P為圓C上的任意一點(diǎn),求線段OP的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為且四個頂點(diǎn)構(gòu)成面積為的菱形.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)且斜率不為0的直線與橢圓交于,兩點(diǎn),記中點(diǎn)為,坐標(biāo)原點(diǎn)為,直線交橢圓于,兩點(diǎn),當(dāng)四邊形的面積為時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com