18.已知長方體ABCD-A1B1C1D1內(nèi)接于球O,底面ABCD是正方形,E為AA1的中點(diǎn),OA⊥平面BDE,則$\frac{{A{A_1}}}{AB}$=$\sqrt{2}$.

分析 以D為原點(diǎn),建立空間直角坐標(biāo)系OO-xyz,利用向量法能求出$\frac{A{A}_{1}}{AB}$的值.

解答 解:以D為原點(diǎn),建立空間直角坐標(biāo)系O-xyz,
設(shè)AB=a,AA1=c,
則A(a,0,0),E(a,0,$\frac{c}{2}$),D(0,0,0),
B(a,a,0),D(0,0,c),O($\frac{a}{2},\frac{a}{2},\frac{c}{2}$),
$\overrightarrow{DE}$=(a,0,$\frac{c}{2}$),$\overrightarrow{DB}$=(a,a,0),
$\overrightarrow{OA}$=($\frac{a}{2},-\frac{a}{2},-\frac{c}{2}$),
∵OA⊥平面BDE,
∴$\left\{\begin{array}{l}{\overrightarrow{OA}•\overrightarrow{DE}=\frac{{a}^{2}}{2}-\frac{{c}^{2}}{4}=0}\\{\overrightarrow{OA}•\overrightarrow{DB}=\frac{{a}^{2}}{2}-\frac{{a}^{2}}{2}=0}\end{array}\right.$,解得c=$\sqrt{2}a$,
∴$\frac{A{A}_{1}}{AB}$=$\frac{c}{a}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評 本題考查線段比值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn,若a1=d=1,則$\frac{{{S_n}+8}}{a_n}$的最小值$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為:$\left\{\begin{array}{l}x=a-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos2θ=sinθ,直線l與曲線C交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的上方).
(Ⅰ)若a=0,求M,N兩點(diǎn)的極坐標(biāo);
(Ⅱ)若P(a,0),且$|PM|+|PN|=8+2\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是邊長為2的正方形,PD=DC,E,F(xiàn)分別是AB,PB的中點(diǎn).
(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點(diǎn)G,使FG⊥平面PCB,并證明你的結(jié)論;
(3)求三棱錐B-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知θ是第三象限角,滿足|sin$\frac{θ}{2}$|=-sin$\frac{θ}{2}$,則$\frac{θ}{2}$是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.方程mx2+(m+1)y2=m(m+1)(m∈R)表示的曲線不可能是(  )
A.直線B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{π}{2}$)的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)ft(x)=(x-t)2-t,t∈R,設(shè)f(x)=$\left\{{\begin{array}{l}{{f_a}(x),{f_a}(x)<{f_b}(x)}\\{{f_b}(x),{f_a}(x)≥{f_b}(x)}\end{array}}$,若0<a<b,則( 。
A.f(x)≥f(b)且當(dāng)x>0時(shí)f(b-x)≥f(b+x)B.f(x)≥f(b)且當(dāng)x>0時(shí)f(b-x)≤f(b+x)
C.f(x)≥f(a)且當(dāng)x>0時(shí)f(a-x)≥f(a+x)D.f(x)≥f(a)且當(dāng)x>0時(shí)f(a-x)≤f(a+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知各項(xiàng)均不相等的等差數(shù)列{an}的前五項(xiàng)和S5=20,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案