10.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f($\frac{π}{2}$)的值為( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

分析 由周期求出ω,由特殊點的坐標(biāo)求出φ的值,可得函數(shù)的f(x)的解析式,從而求得f($\frac{π}{2}$)的值

解答 解:據(jù)圖分析得$\frac{11π}{12}$-$\frac{5π}{12}$=$\frac{T}{2}$,
∴T=π,
又∵T=$\frac{2π}{ω}$,
∴ω=$\frac{2π}{2}$=2,
∴函數(shù)f(x)=sin(2x+φ),
∵sin(2×$\frac{5}{12}$π+φ)=1,|φ|<$\frac{π}{2}$)
∴φ=-$\frac{π}{3}$,
∴函數(shù)f(x)=sin(2x-$\frac{π}{3}$),
∴f($\frac{π}{2}$)=sin(2×$\frac{π}{2}$-$\frac{π}{3}$)=$\frac{\sqrt{3}}{2}$,
故選:D

點評 本題主要考查由函數(shù)y=sin(ωx+φ)的部分圖象求解析式,由周期求出ω,由特殊點的坐標(biāo)求出φ的值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知全集U={x|x是小于9的正整數(shù)},M={1,3,5,7},N={5,6,7},則∁U(M∪N)=(  )
A.{5,7}B.{2,4}C.{2,4,8}D.{1,3,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下列命題:
①函數(shù)$y=sin(2x+\frac{π}{3})$的單調(diào)減區(qū)間為$[kπ+\frac{π}{12},kπ+\frac{7π}{12}],k∈Z$;
②函數(shù)$y=\sqrt{3}cos2x-sin2x$圖象的一個對稱中心為$(\frac{π}{6},0)$;
③函數(shù)y=cosx的圖象可由函數(shù)$y=sin(x+\frac{π}{4})$的圖象向右平移$\frac{π}{4}$個單位得到;
④若方程$sin(2x+\frac{π}{3})-a=0$在區(qū)間$[0,\frac{π}{2}]$上有兩個不同的實數(shù)解x1,x2,則${x_1}+{x_2}=\frac{π}{6}$.
其中正確命題的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知長方體ABCD-A1B1C1D1內(nèi)接于球O,底面ABCD是正方形,E為AA1的中點,OA⊥平面BDE,則$\frac{{A{A_1}}}{AB}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓方程為x2+y2-2x-9=0,直線方程mx+y+m-2=0,那么直線與圓的位置關(guān)系( 。
A.相交B.相離C.相切D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若實數(shù)m取值是區(qū)間[0,6]上的任意數(shù),則關(guān)于x的方程x2-mx+4=0有實數(shù)根的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C的參數(shù)方程:$\left\{\begin{array}{l}{x=acosα}\\{y=bsinα}\end{array}\right.$(α為參數(shù)),曲線C上的點M(1,$\frac{\sqrt{2}}{2}$)對應(yīng)的參數(shù)α=$\frac{π}{4}$,以坐標(biāo)原點O為極點,以x軸正半軸為極軸,建立極坐標(biāo)系,點P的極坐標(biāo)是($\sqrt{2}$,$\frac{π}{2}$),直線l過點P,且與曲線C交于不同的兩點A、B.(1)求曲線C的普通方程;
(2)求|PA|•|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:?x∈(1,+∞),2x-1-1>0,則下列敘述正確的是( 。
A.¬p為:?x∈(1,+∞),2x-1-1≤0B.¬p為:?x∈(1,+∞),2x-1-1<0
C.¬p為:?x∈(-∞,1],2x-1-1>0D.¬p是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點分別為F1、F2,若橢圓上存在點P,滿足∠F1PF2=120°,則該橢圓的離心率的取值范圍是[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

同步練習(xí)冊答案