分析 根據(jù)A∪B=A,得到B⊆A,結(jié)合集合關(guān)系進(jìn)行求解即可.
解答 解:∵A∪B=A,
∴B⊆A,
∵A={x|x2-1<0}={x|-1<x<1},B={x|(x-a)(x-a2)<0,a∈R},
∴若a=0或a=1,則B=∅,此時(shí)滿足條件B⊆A,
若0<a<1,則B={x|(x-a)(x-a2)<0,a∈R}={x|a2<x<a},
若滿足條件.B⊆A,
則$\left\{\begin{array}{l}{0<a<1}\\{a≤1}\end{array}\right.$,解得0<a<1,
若a>1或a<0,則B={x|(x-a)(x-a2)<0,a∈R}={x|a<x<a2},
若滿足條件B⊆A,
則$\left\{\begin{array}{l}{a>1或a<0}\\{{a}^{2}≤1}\\{a≥-1}\end{array}\right.$.即$\left\{\begin{array}{l}{a>1或a<0}\\{-1≤a≤1}\\{a≥-1}\end{array}\right.$,
解得-1≤a<0,
綜上-1≤a≤0或a=1,
即存在常數(shù)a,當(dāng)-1≤a≤0或a=1時(shí),使A∪B=A.
點(diǎn)評 本題主要考查集合關(guān)系的應(yīng)用,根據(jù)條件A∪B=A,得到B⊆A是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(a2+a+1)>f($\frac{3}{4}$) | B. | f(a2+a+1)≥f($\frac{3}{4}$) | C. | f(a2+a+1)<f($\frac{3}{4}$) | D. | f(a2+a+1)≤f($\frac{3}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2-$\sqrt{2}$ | B. | -1 | C. | 2 | D. | $\frac{17}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{19}{10}$ | B. | $\frac{21}{40}$ | C. | $\frac{9}{20}$ | D. | $\frac{11}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北淶水波峰中學(xué)高一9月月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知二次函數(shù)f(x)=ax2+bx(a、b是常數(shù),且a≠0)滿足條件:f(2)=0,且方程f(x)=x有兩個(gè)相等實(shí)根.
(1)求f(x)的解析式并寫出函數(shù)的值域
(2)比較f(0)、f(1)、f(3)的大;
(3)若x1<x2<1,比較f(x1)與f(x2)的大;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com